UNIVERSIDAD CATÓLICA SEDES SAPIENTIAE

FACULTAD DE INGENIERÍA

Evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED en edificaciones del centro poblado de Sacsamarca, Tarma

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR

Pamela María Cahuana Zavala

ASESOR

Manuel Ismael Laurencio Luna

Tarma, Perú

2024

METADATOS COMPLEMENTARIOS

Datos del autor

Nombres	Pamela Maria
Apellidos	Cahuana Zavala
Tipo de documento de identidad	DNI
Número del documento de identidad	70236594
Número de Orcid (opcional)	

Datos del asesor

Nombres	Manuel Ismael
Apellidos	Laurencio Luna
Tipo de documento de identidad	DNI
Número del documento de identidad	42362708
Número de Orcid (obligatorio)	https://orcid.org/0000-0002-5992-0202

Datos del Jurado

Datos del presidente del jurado

Nombres	Felix German
Apellidos	Delgado Ramirez
Tipo de documento de identidad	DNI
Número del documento de identidad	22264222

Datos del segundo miembro

Nombres	Victor
Apellidos	Garces Diaz
Tipo de documento de identidad	DNI
Número del documento de identidad	32860015

Datos del tercer miembro

Nombres	Alcibiades
Apellidos	Bances Meza
Tipo de documento de identidad	DNI
Número del documento de identidad	44127737

Datos de la obra

Materia*	Vulnerabilidad sísmica, evaluación comparativa, métodos de Hirosawa, método CENEPRED
Campo del conocimiento OCDE Consultar el listado: enlace	https://purl.org/pe-repo/ocde/ford#2.01.00
Idioma (Normal ISO 639-3)	SPA - español
Tipo de trabajo de investigación	Tesis
País de publicación	PE - PERÚ
Recurso del cual	
forma parte (opcional)	
Nombre del grado	Ingeniero Civil
Grado académico o título profesional	Título Profesional
Nombre del programa	Ingeniería Civil
Código del programa Consultar el listado: enlace	732016

^{*}Ingresar las palabras clave o términos del lenguaje natural (no controladas por un vocabulario o tesauro).

FACULTAD DE INGENIERÍA

ACTA N° 058-2024-UCSS-FI/TPICIV

SUSTENTACION DE TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL FILIAL TARMA

Los Olivos, 06 de mayo del 2024

Siendo las 11:01 horas del 06 de mayo del 2024, utilizando los recursos para la videoconferencia disponibles en la Universidad Católica Sedes Sapientiae, se dio inicio a la sustentación de la Tesis:

Evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED en edificaciones del centro poblado de Sacsamarca, Tarma

Por la Bachiller en Ciencias de la Ingeniería Civil:

CAHUANA ZAVALA, PAMELA MARIA

Ante el Jurado calificador conformado por el:

Dr. DELGADO RAMÍREZ, Félix German Presidente Mgtr. GARCÉS DÍAZ, Víctor Secretario Ing. BANCES MEZA, ALCIBIADES Miembro

Siendo las 12:20 horas, habiendo sustentado y atendido las preguntas realizadas por cada uno de los miembros del jurado; y luego de la respectiva deliberación, el jurado le otorgó la calificación de:

APROBADO

En mérito a la calificación obtenida se expide la presente acta con la finalidad que el Consejo de Facultad considere se le otorgue al Bachiller CAHUANA ZAVALA, PAMELA MARIA el Título Profesional de:

INGENIERO CIVIL

En señal de conformidad firmamos,

Ing. BANCES MEZA, ALCIBIADES Miembro

Mgtr. GARCÉS DÍAZ, Víctor Secretario

Dr. DELGADO RAMÍREZ, Félix Germán Presidente

Anexo 2

CARTA DE CONFORMIDAD DEL ASESOR(A) DE TESIS / INFORME ACADÉMICO/ TRABAJO DE INVESTIGACIÓN/ TRABAJO DE SUFICIENCIA PROFESIONAL CON INFORME DE EVALUACIÓN DEL SOFTWARE ANTIPLAGIO

Lima, 03 de Mayo de 2024

Señor VICTOR GARCES DIAZ Jefe del Departamento de Investigación Facultad de Ingeniería - UCSS

Reciba un cordial saludo.

Sirva el presente para informar que la tesis / informe académico/ trabajo de investigación/ trabajo de suficiencia profesional, bajo mi asesoría, con título: Evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED en edificaciones del centro poblado de Sacsamarca, Tarma, presentado por CAHUANA ZAVALA, PAMELA MARIA (código de 2020101816 y DNI 70236594) para optar el título profesional/grado académico de Ingeniero Civil ha sido revisado en su totalidad por mi persona y **CONSIDERO** que el mismo se encuentra **APTO** para ser sustentado ante el Jurado Evaluador.

Asimismo, para garantizar la originalidad del documento en mención, se le ha sometido a los mecanismos de control y procedimientos antiplagio previstos en la normativa interna de la Universidad, **cuyo resultado alcanzó un porcentaje de similitud de 20** % (poner el valor del porcentaje).* Por tanto, en mi condición de asesor(a), firmo la presente carta en señal de conformidad y adjunto el informe de similitud del Sistema Antiplagio Turnitin, como evidencia de lo informado.

Sin otro particular, me despido de usted. Atentamente,

Laurencio Luna, Manuel Ismael DNI N°: 42362708

ORCID: 0000-0002-5992-0202 Facultad de Ingeniería - UCSS

* De conformidad con el artículo 8°, del Capítulo 3 del Reglamento de Control Antiplagio e Integridad Académica para trabajos para optar grados y títulos, aplicación del software antiplagio en la UCSS, se establece lo siguiente:

Artículo 8°. Criterios de evaluación de originalidad de los trabajos y aplicación de filtros

El porcentaje de similitud aceptado en el informe del software antiplagio para trabajos para optar grados académicos y títulos profesionales, será máximo de veinte por ciento (20%) de su contenido, siempre y cuando no implique copia o indicio de copia.

DEDICATORIA

Dedicado al niño Dios

AGRADECIMIENTO

Gracias a Dios, a mis abuelos, conjuntamente a mis padres Manuel y María, a todos los miembros de mi familia, a mi asesor Ing. Manuel Laurencio, y a toda la Comunidad UCSS.

RESUMEN

El presente estudio de investigación evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED en edificaciones del centro poblado de Sacsamarca, Tarma" tuvo por finalidad analizar en forma comparativa los métodos más adecuados para verificar la vulnerabilidad sísmica en las edificaciones. Se adoptó un enfoque cuantitativo cono diseño no experimental del tipo aplicado. Como instrumento se utilizó la ficha registro y la técnica la observación. Los resultados obtenidos fueron que el método de Hirosawa muestra que el 55% es vulnerable; y 45% es invulnerable, mientras con el método de CENEPRED posee vulnerabilidad alta con 0.158 de incidencia con sus dimensiones de exposición, fragilidad y resiliencia. Asimismo, posee un 31% de susceptibilidad, por tanto, se concluyó que ambos métodos generaron más del 30% de vulnerabilidad, pero el método Hirosawa es mucho más preciso, exacto y confiable porque tiene rigor metodológico estricto, a comparación del método CENEPRED que es un método de aproximación con soporte matemático que incorpora información cualitativa y cuantitativa, establecido para la Gestión del Riesgo de Desastres (SIGRID) en Perú. Ambos métodos son válidos, en ocasiones de emergencia CENEPRED y para un análisis más detallado Hirosawa modificado.

Palabras claves: Vulnerabilidad sísmica, evaluación comparativa, métodos deHirosawa, método CENEPRED

ABSTRACT

The present research study "Comparative Evaluation of Seismic Vulnerability Based on the Hirosawa and CENEPRED Methods in Buildings of the Populated Center of Sacsamarca, Tarma" aimed to comparatively analyze the most appropriate methods to verify seismic vulnerability in buildings, adopts a quantitative approach, whose design used was non-experimental, and the type applied; The instrument was the record sheet and the technique was observation. The results obtained were that Hirosawa's method shows that 55% are vulnerable; and 45% are invulnerable, while with the CENEPRED method it has high vulnerability with 0.158 incidence with its dimensions of exposure, fragility and resilience; It also has a 31% susceptibility, therefore, it can be concluded from the general objective that both methods generated more than 30% vulnerability; Thus, the Hirosawa method is much more precise, exact and reliable since it has strict methodological rigor, compared to the CENEPRED method, which is an approximation method with mathematical support that incorporates qualitative and quantitative information, established for Risk Management. of. Disasters (SIGRID) in Peru; both valid, on emergency occasions CENEPRED and for more detailed analysis modified Hirosawa.

Keywords: Seismic vulnerability, comparative evaluation, Hirosawa methods, CENEPRED method

ÍNDICE

DEDICAT	ORIA	i
AGRADEO	CIMIENTO	ii
RESUMEN	N	iii
ÍNDICE		V
ÍNDICE D	E TABLAS	. ix
ÍNDICE D	E FIGURAS	ιiii
INTRODU	CCIÓN	XV
CAPÍTULO	O I. PLANTEAMIENTO DEL PROBLEMA	1
1.1.	Formulación del Problema	1
1.1.1.	Problema Principal	1
1.1.2.	Problemas Secundaríos	1
1.2.	Objetivos de la Investigación	1
1.2.1.	Objetivo Principal	1
1.2.2.	Objetivos Secundaríos	1
1.3.	Justificación e Importancia de la Investigación	2
1.3.1.	Justificación	2
1.3.1.1	1. Práctica	2
1.3.1.2	2. Social	2
1.3.1.3	3. Económica	3
1.3.1.4	4. Teórica	3
1.3.1.5	5. Metodológica	3
1.3.2.	Importancia	4
1.4.	Delimitación del área de Investigación	5
1.4.1.	Delimitación Teórica	5

1.4.2.	Delimitación Espacial	5
CAPÍTUL	O II. MARCO TEÓRICO	7
2.1.	Antecedentes Internacionales y Nacionales	7
2.1.1.	Antecedentes Internacionales	7
2.1.2.	Antecedentes Nacionales	9
2.2.	Bases Teóricas	12
2.2.1.	Sismo	12
2.2.2.	Sismicidad	14
2.2.3.	Sismo	15
2.2.4.	Peligrosidad sísmica	15
2.2.5.	Vulnerabilidad sísmica	15
2.2.6.	Riesgo sísmico.	16
2.2.7.	Escenarío de peligro sísmico.	16
2.2.8.	Zonificación sísmica	17
2.2.9.	Vulnerabilidad sísmica	20
2.2.10.	Métodos de evaluación de la vulnerabilidad sísmica	20
2.2.11.	Método de CENEPRED.	21
2.2.12.	Descripción de las dimensiones del método de CENEPRED	21
2.2.12	2.1. Dimensión social	21
2.2.12	2.2. Dimensión económica	21
2.2.12	2.3. Dimensión ambiental	22
2.2.13.	Descripción de los factores del método de CENEPRED	22
2.2.13	3.1. Exposición	22
2.2.13	3.2. Fragilidad	23
2.2.13	3.3. Resiliencia	24

2.2.14.	Niveles de Vulnerabilidad del método de CENEPRED	24
2.2.15.	Método Hirosawa	26
2.2.1.	Albañilería confinada	29
2.3.	Definiciones de términos básicos	34
CAPÍTUL	O III. HIPÓTESIS Y VARIABLES DE INVESTIGACIÓN	35
3.1.	Hipótesis	35
3.1.1.	Hipótesis Principal	35
3.1.2.	Hipótesis Secundarias	35
3.2.	Variables e Indicadores	35
3.2.1.	Variables	35
3.3.	Operacionalización de las variables	36
CAPÍTUL	O IV. DISEÑO DE LA INVESTIGACIÓN	37
4.1.	Metodología de la Investigación	37
4.1.1.	Enfoque de la Investigación	37
4.1.2.	Tipo de Investigación	37
4.1.3.	Alcance de la Investigación	37
4.1.4.	Diseño de la Investigación	37
4.2.	Métodos y Técnicas del Proyecto	37
4.3.	Diseño Estadístico	38
4.3.1.	Población	38
4.3.2.	Muestra	38
4.4.	Técnicas y Herramientas Estadísticas	38
4.4.1.	Técnicas para la Recolección de Datos	38
4.4.2.	Instrumentos de Investigación	38
CAPÍTUL	O V. DESARROLLO DE LA INVESTIGACIÓN	40

5.1.	Descripción de la zona de estudio
5.1.1.	Clima
5.1.2.	Suelo40
5.1.3.	Vulnerabilidad
5.2.	Características de las estructuras de albañilería confinada
5.3.	Evaluación de vulnerabilidad sísmica con el método de Hirosawa
5.3.1.	Cálculo el índice de Vulnerabilidad estructural (Is)
5.3.2.	Determinar el índice de la demanda sísmica - método de Hirosawa
5.3.3.	Comparación el índice de vulnerabilidad estructural y el índice de la demanda
sísmica	55
5.4.	Evaluación de vulnerabilidad sísmica con el método de CENEPRED 64
5.4.1.	Análisis de la dimensión social de vulnerabilidad - método de CENEPRED 65
5.4.2.	Análisis de la dimensión económica de vulnerabilidad - método de CENEPRED
	72
5.5.	Presentación, análisis e interpretación de datos
5.5.1.	Análisis estadístico
5.5.2.	Comparativa de vulnerabilidad por el método de Hirosawa y CENEPRED 83
5.5.3.	Posible solución para estructuras que tengan alto índice de vulnerabilidad 83
CAPÍTULO	O VI. CONCLUSIONES Y RECOMENDACIONES
6.1.	Conclusiones
6.2.	Recomendaciones
Referencias	Bibliográficas
ANEXOS	94

ÍNDICE DE TABLAS

Tabla 1 Escenarios de peligro sísmico	16
Tabla 2 Zonificación del área de estudio	18
Tabla 3 Factor de suelo en función de zona sísmica	18
Tabla 4 Períodos T _P y T _L en función del tipo de suelo	18
Tabla 5 Categoría y factor de uso de viviendas	19
Tabla 6 Irregularidad de altura	19
Tabla 7 Irregularidad de planta	20
Tabla 8 Parámetros de exposición física según localización de vivienda	23
Tabla 9 Fragilidad física según el material de construcción	23
Tabla 10 Porcentaje de fragilidad social según las edades	23
Tabla 11 Parámetros según fragilidad económica	24
Tabla 12 Resiliencia física de viviendas	24
Tabla 13 Niveles de vulnerabilidad del método de CENEPRED	25
Tabla 14 Limitaciones en el uso de unidades de albañilería para fines estructurales	31
Tabla 15 Características de unidades de albañilería	31
Tabla 16 Dosificación según tipo de mortero	32
Tabla 17 Dosificación de mortero de CAPECO	32
Tabla 18 Propiedades de aceros	33
Tabla 19 Operacionalización de las variables	36
Tabla 20 Valores de los coeficientes α ₁	45
Tabla 21 Resistencias características de Albañilería MPa	46
Tabla 22 Datos para el análisis de la edificación N°01 – primer nivel	47
Tabla 23 Modo de falla para la edificación N°01 de albañilería confinada – primer nivel	48
Tabla 24 Modo de falla para la edificación N°01 de albañilería confinada – primer nivel	48

Tabla 25 Datos para el análisis de la edificación N°01 – segundo nivel	8
Tabla 26 Modo de falla para la edificación N°01 de albañilería confinada – segundo nivel4	.9
Tabla 27 Modo de falla para la edificación N°01 de albañilería confinada – segundo nivel4	.9
Tabla 28 Datos para el análisis de la edificación N°01 – tercer nivel	.9
Tabla 29 Modo de falla para la edificación N°01 de albañilería confinada – tercer nivel5	0
Tabla 30 Modo de falla para la edificación N°01 de albañilería confinada – tercer nivel5	0
Tabla 31 Data complementaria para realizar el cálculo del Índice Sísmico5	0
Tabla 32 Datos complementarios en función de valores de Gi y Ri5	1
Tabla 33 Valores del índice de deterioro	3
Tabla 34 Tipos de daño a causa de sismo	4
Tabla 35 Datos para el índice de demanda Sísmica5	4
Tabla 36 Datos de factor de zona	5
Tabla 37 Vulnerabilidades por niveles de edificación	6
Tabla 38 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°015	7
Tabla 39 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°025	7
Tabla 40 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°035	7
Tabla 41 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°045	8
Tabla 42 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°055	8
Tabla 43 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°065	8
Tabla 44 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°075	9
Tabla 45 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°085	9
Tabla 46 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°095	9
Tabla 47 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°106	0
Tabla 48 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°116	0
Tabla 49 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°126	0

Tabla 50 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°13.	61
Tabla 51 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°14.	61
Tabla 52 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°15	62
Tabla 53 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°16	62
Tabla 54 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°17	62
Tabla 55 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°18 .	63
Tabla 56 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°19	63
Tabla 57 Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°20	63
Tabla 58 Resultados generales de vulnerabilidad con el método de Hirosawa	64
Tabla 59 Parámetros de exposición social – CENEPRED	66
Tabla 60 Parámetros de Fragilidad Social CENEPRED – parte 1	67
Tabla 61 Parámetros de Fragilidad Social CENEPRED – parte 2	68
Tabla 62 Resultados de fragilidad social - CENEPRED	68
Tabla 63 Parámetros de resiliencia social CENEPRED - parte 1	69
Tabla 64 Parámetros de resiliencia social CENEPRED - parte 2	70
Tabla 65 Resultados de resiliencia social - CENEPRED	71
Tabla 66 Resultados de vulnerabilidad en su dimensión social - CENEPRED	71
Tabla 67 Parámetros de exposición económica CENEPRED	72
Tabla 68 Resultados de exposición económica - CENEPRED	73
Tabla 69 Parámetros de fragilidad económica CENEPRED	73
Tabla 70 Resultados de fragilidad económica CENEPRED.	74
Tabla 71 Parámetros de resiliencia económica CENEPRED	74
Tabla 72 Resultados de resiliencia económica - CENEPRED	75
Tabla 73 Resultados de vulnerabilidad en su dimensión económica - CENEPRED	75
Tabla 74 Parámetros de exposición ambiental CENEPRED	76

Tabla 75 Resultados de exposición económica - CENEPRED	.77
Tabla 76 Parámetros de fragilidad ambiental CENEPRED	.77
Tabla 77 Resultados de fragilidad ambiental - CENEPRED	78
Tabla 78 Parámetros de resiliencia ambiental CENEPRED	78
Tabla 79 Resultados de fragilidad ambiental - CENEPRED	79
Tabla 80 Resultados de vulnerabilidad en su dimensión ambiental - CENEPRED	79
Tabla 81 Resultados de vulnerabilidad general CP - método de CENEPRED	79
Tabla 82 Descripción de vulnerabilidad alta brindada por CENEPRED	80
Tabla 83 Estadígrafos de vulnerabilidad general CP - método de CENEPRED	81
Tabla 84 Estadígrafos de vulnerabilidad general CP - método de CENEPRED	82

ÍNDICE DE FIGURAS

Figura 1 Viviendas de mala calidad en Latinoamérica y el Caribexvi
Figura 2 Evolución de Lima en el siglo XXxvii
Figura 3 Centro Poblado de Sacsamarca – Tarma (Google Maps)xix
Figura 4 Viviendas de albañilería en el CP de Sacsamarca (Google Maps)xix
Figura 5 Mapa del Perú – Región Junín5
Figura 6 Tarma y sus distritos6
Figura 7 Centro Poblado de Sacsamarca con coordenadas
Figura 8 Comportamiento de las Placas tectónicas
Figura 9 Mapas de Placas tectónicas
Figura 10 Nivel de desempeño sísmico según tipo de edificación
Figura 11 Mapas de Placas tectónicas
Figura 12 Metodología Hirosawa
Figura 13 Elementos de albañilería confinada
Figura 14 Susceptibilidad por movimiento en masa en Perú
Figura 15 Vivienda de 3 niveles de Sacsamarca
Figura 16 Junta de dilatación de plano de edificación
Figura 17 Componentes que analizan las dimensiones ambiental, económica y social65
Figura 18 Resultados de exposición social - CENEPRED
Figura 19 Porcentaje de edificaciones con vulnerabilidad - método de Hirosawa modificado.
81
Figura 20 Porcentaje incidencia de dimensiones de vulnerabilidad - método de CENEPRED.
82
Figura 21 Aplicación de refuerzo a flexión con sistema FRCM

•	
X1	V

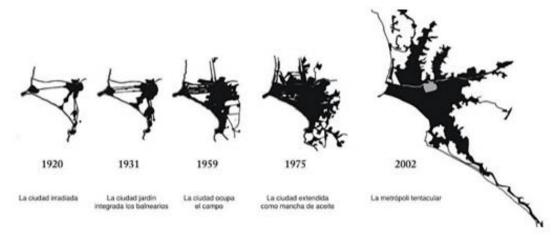
Figura 22	Aplicación de refuerzo a cortante con sistema FRCM	84
Figura 23	Aplicación de refuerzo en confinamiento con sistema FRCM	84

INTRODUCCIÓN

A nivel mundial existe riesgo sísmico que afecta a las edificaciones, así como a la población en general, se puede mencionar que los 5 países que tienen mayor incidencia según Juste (2017), son Estados Unidos, México, Guatemala, Costa Rica y Perú, lo que incrementa la alta vulnerabilidad sísmica y sumado a lo mencionado anteriormente, se presentaría este problema a viviendas construidas de manera informal, debido al incremento poblacional y territorial; en los países Estadounidenses y Europeos, las construcciones presentan estudios ingenieriles que brindan garantía de una edificación de calidad y perdurable en el tiempo, aunque ello demande costos para su construcción; sin embargo, existe población que no cuenta con los recursos necesarios por tener una economía baja, por ello lo autoconstruyen, es decir parte de ellos la idea del diseño arquitectónico y estructural (El-etar, 2018)

En Latinoamérica, países como Ecuador presentan alta vulnerabilidad sísmica, como menciona Jiménez et al. (2018) denotaron que Cuenca es una ciudad con alta amenaza sísmica, vulnerable ante sismos, en particular su Centro Histórico; y tener alta vulnerabilidad sísmica puede afectar a viviendas construidas informalmente, ya que el Banco Interamericana de Desarrollo (2012) tiene reportes que en América latina y el Caribe, cerca de unos dos millones del total reflejado en tres millones de familias que se constituyen anualmente, se viven en edificaciones informales, esto en lugares poco privilegiados monetariamente, así también debido a que existen pocas viviendas económicas a las que pueden acceder.

Figura 1Viviendas de mala calidad en Latinoamérica y el Caribe


Nota. En el gráfico mostrado, podemos observar que los países con viviendas de mala calidad son Nicaragua con 78%, Bolivia con 75% y Perú con 72%, lo que refiere que debido a que Perú tiene gran número de viviendas de mala calidad y a nivel mundial es el número 5 en tener riesgo sísmico alto, pueda generar vulnerabilidad a escalas altas en viviendas construidas informalmente, al igual que México por encontrarse en segundo lugar a nivel mundial, pero 34% en viviendas de mala calidad, lo que lo hace susceptible a nivel Latinoamérica.

A finales del 2022, el Perú subyace un silencio sísmico de 275 años desde el último movimiento telúrico con más intensidad ocurrido el 28 de octubre de 1746 con 8.8 grados de magnitud como lo detalla el Instituto Nacional de Defensa Civil (INDECI), el Instituto Geofísico del Perú (INDECI) y el Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID, 2019), que afectó al país y dentro de la ciudad se generaron pérdidas materiales y humanas, en muchos casos las edificaciones sufrieron daños estructurales severos hasta irreversibles por la gravedad que destruyó muchos hogares, siendo el Perú un país activamente sísmico es necesario que se puedan realizar estudios ingenieriles que

garanticen la poca vulnerabilidad sísmica y brinde seguridad a las personas que habitan estas infraestructuras (Salvatierra, 2018), en referencia a ello RPP [Radio Programas del Perú, (2018) haciendo referencia a CAPECO (Cámara Peruana de Construcción, (2018)], el 70 % de las viviendas son informales, y se puede incrementar hasta el 80%; según CISMID (Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres, 2018) en las áreas periféricas alcanza el 90%, referente a ello el presidente de Capeco, Ricardo Arbulú (2018) dijo que "las viviendas informales son que se verían más afectadas en caso de sismo, debido a que no han participado en su diseño profesionales, arquitectos, en el diseño de la vivienda, tampoco en su construcción y menos en su supervisión" (p.17).

Del mismo modo la urbanización acelerada del siglo XX produjo extensas áreas de CPs (Centros Poblados) informales, el cual al paso de los años se convirtieron en formales. Sin embargo, tienen déficit de condiciones en su vivienda, este crecimiento poblacional supuso un cambio al modelo urbano, dónde los CPs pasaron a tener crecimiento mayoritarío, ocupando en la actualidad el 60% del suelo urbano de Lima, según (Sáez et al., 2010).

Figura 2 *Evolución de Lima en el siglo XX*

Nota. Según la figura 2 observamos en 1920 una ciudad irradiada, es decir que existe un eje central con algunas viviendas que se trasladaron a la periferie, se aumentó un poco más en 1931, en 1959 y 1975 se generó más inmersión en el la ocupación del campo y extendida, sin embargo para el año 2002 se desarrolló la metrópoli tentacular dónde se expandió la población hacia la periferia a lo que se llama CPs.

Según el Instituto Geofísico del Perú (2020) en la región Junín se presentó el 07 de agosto de 2020 a horas 21:16:28 un sismo de magnitud 4.9 de profundidad 10 km en el kilómetro 14 al sur este de Junín, en Junín, afectando a viviendas de la región. (Diario La República, 2020), debido a que la Región Junín se encuentra en la zona 3 según la norma E.030, diseño sismorresistente, las viviendas construidas informalmente de la región Junín pueden poseer alta vulnerabilidad, por encontrarse en zonas periféricas de la ciudad.

El epicentro del sismo mencionado se denota en San Pedro de Cajas, provincia de Tarma, en el departamento de Junín, dónde presentaron grandes daños materiales en 2 viviendas autoconstruidas de albañilería, con daños de gran magnitud [INDECI Instituto Nacional de Defensa Civil, 2017]. Tarma cuenta con 9 distritos con altitud de 3053 msnm y un área de 2585 km² en la región sierra, tiene suelos que básicamente se tratan como cultivo de hortalizas extensivo con riego con bordes forestales (Gobierno Regional de Junín, 2015), el cuál al construir viviendas informales puedan tener alta vulnerabilidad sísmica.

Tarma cuenta con distintos CPs periféricos, una de ellas denominada Sacsamarca, la mayoría de pobladores tienen como actividad principal, la agricultura, por estar situada en la zona agrícola de la ciudad, y por ende posee terrenos con capa orgánica y construyen en el mismo, además de ello en la zona, el proceso constructivo es realizado de manera informal y en un gran número por albañiles, sin planos, estudios o diseños arquitectónicos y estructurales, son autoconstruidos en la base superficial del terreno, ello aunado a la zonificación sísmica denota posible vulnerabilidad sísmica alta que puede causar daños a sus viviendas y personales; es debido a ello que subyace necesaria conocer el grado de vulnerabilidad sísmica para realizar algún refuerzo y con ello disminuir el nivel de riesgo, así como por ser una zona en auge poblacional; las viviendas típicas del CP de Sacsamarca en su mayoría son de albañilería de 2 o 3 niveles.

Figura 3

Centro Poblado de Sacsamarca – Tarma (Google Maps)

Nota. En la imagen podemos observar la población del CP Sacsamarca en la ciudad de Tarma, dónde existen campos de cultivo en su mayoría, así como viviendas dispersas.

Tarma cuenta con distintos CPs periféricos, una de ellas denominada Sacsamarca, la mayoría de pobladores.

En Sacsamarca, se observa que existen viviendas de uno o dos niveles con proyección a tres, que son de albañilería, el cuál nos muestra el objeto de estudio que determinará nuestra muestra, para el sector seleccionado.

Figura 4Viviendas de albañilería en el CP de Sacsamarca (Google Maps)

La Alta vulnerabilidad sísmica en construcciones informales, es producido por viviendas mal diseñadas, debido básicamente porque no se realizó el análisis estructural, así como no existen planos de arquitectura o estructuras, simplemente los que construyeron tienen una idea que es plasmada en consulta con el cliente (Sánchez y Alvarado 2020), por ello la consecuencia es que a futuro, si se siguen construyendo viviendas informales, tendrán alta vulnerabilidad sísmica que traerá consecuencias como colapso ante eventos sisimicos a nivel de agrietamientos o desplome total de la vivienda (Ponciano et al., 2017).

Asimismo, otra causa es el proceso constructivo deficiente (Mosqueira y Tarque, 2015) causado por la persona que construye y su nulo o poco conocimiento del Reglamento Nacional de Edificaciones y demás normas de diseño sismorresistente, así como otro factor puede darse que el personal que realiza la construcción se encuentre poco capacitado; que tiene como consecuencia daños a la propiedad, que generan pérdidas económicas en función de su vivienda por lo que tanto ahorraron para construirlo, así como pérdidas de bienes del hogar como son electrodomésticos y muebles (Izaguirre, 2017).

Otro factor que puede estar causando el problema es la construcción realizada informalmente, que se debe al poco presupuesto con el que dispone el propietarío y la falta de información recibida sobre el tema de formalización de las construcciones, dónde se instruye al propietarío sobre la construcción de su vivienda, y como consecuencia más significativa se podría dar la pérdida humana, es decir que puedan fallecer los propietaríos, así como los familiares a los que compromete la vivienda (Revista Andina, 2016).

CAPÍTULO I. PLANTEAMIENTO DEL PROBLEMA

1.1. Formulación del Problema

1.1.1. Problema Principal

¿De que manera se realizará la evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED en edificaciones del centro poblado de Sacsamarca, Tarma?

1.1.2. Problemas Secundarios

- PS1: ¿De qué manera se evaluará los índices y nivel vulnerabilidad sísmica de edificaciones del centro poblado de Sacsamarca basado en el método de Hirosawa?
- PS2: ¿De qué manera se evaluarán el nivel vulnerabilidad sísmica de edificaciones
 del centro poblado de Sacsamarca basado en el método de CENEPRED?

1.2. Objetivos de la Investigación

1.2.1. Objetivo Principal

Realizar la evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED en edificaciones del centro poblado de Sacsamarca, Tarma.

1.2.2. Objetivos Secundarios

- OS1: Determinar los índices y nivel vulnerabilidad sísmica de edificaciones del centro poblado de Sacsamarca basado en el método de Hirosawa.
- OS2; Establecer el nivel vulnerabilidad sísmica de edificaciones del centro poblado de Sacsamarca basado en el método de CENEPRED.

1.3. Justificación e Importancia de la Investigación

1.3.1. Justificación

1.3.1.1.Práctica

Se justifica de manera práctica debido que en la obtención de los resultados se denotará el uso para modificar la realidad del campo de estudio, de tal modo que al determinar la vulnerabilidad el centro poblado de Sacsamarca tendrá conocimientos de la situación actual en la que se encuentran las viviendas ante un sismo, y áreas para construir aledañas a las mismas con potencial de riesgo, para tomar medidas que mitiguen el evidente riesgo potencial; el aporte es denotar que la metodología de Hirosawa modificado y la metodología de CENEPRED brindan seguridad de evaluación en vulnerabilidad sísmica como mínimo en 30% en ambos métodos, haciendo que se puedan evaluar en primera instancia de modo general con parámetros de lugar con el método nacional y luego denotar los niveles de evaluación cuantificativa de comportamiento y configuración estructural.

1.3.1.2.Social.

El proyecto se justifica socialmente debido a que según el daño que ocasione a la vivienda con alta vulnerabilidad sísmica afectaría la integridad humana, que es la columna vertebral de la industria de la construcción, así como el de su comunidad, en este caso existen 20 viviendas con densidad poblacional de 6.2 personas/vivienda (según Sierra Central E.I.R.L., 2022) haciendo un total de 124 personal directamente, si ello ocasionaría daño a viviendas aledañas se incrementa en 310 habitantes, siendo este un 43.66% de su población total; teniendo en cuenta que el centro poblado de Sacsamarca es un área en crecimiento y desarrollo poblacional, se observa que en el año 2020 al 2024 se incrementaron las viviendas de 3 niveles y se proyecta que por la presencia de la construcción del nuevo local de la UCSS se incremente dichas edificaciones.

1.3.1.3. Económica

La propuesta de investigación se justifica económicamente porque los ciudadanos del centro poblado de Sacsamarca en Tarma realizan sus viviendas con esfuerzos de años de trabajo, y en caso de sismos y tener alta vulnerabilidad sísmica, podrían acarrear daños materiales el cual afectaría al tener pérdidas económicas en bienes y la edificación en su conjunto de forma parcial o global pueda sufrir de desplome o falla, debido al silencio sísmico presente en el Perú.

1.3.1.4.**Teórica**

La propuesta de investigación se justifica teóricamente debido a la puesta en práctica el método adaptado de Hirosawa modificado para albañilería confinada, que en principio fue creado para concreto armado, modificado en el año 2021, contrastado al método aplicado por el SIGRID (Sistema de Información para la Gestión de Riesgos de Desastres) del CENEPRED, que es un método de evaluación nacional en el Perú, validado, por ello se pretende generar existencia de nuevos conocimientos acerca de las evaluaciones comparativas de dichos métodos.

1.3.1.5.Metodológica.

La propuesta de investigación se justifica metodológicamente debido a que es un tema de interés en análisis sísmico, además de ello la vulnerabilidad en Tarma no está evaluada en sectores rurales que considere las viviendas de albañilería confinada; se pretende utilizar los métodos de Hirosawa y CENEPRED para la evaluación comparativa del nivel de vulnerabilidad, teniendo en cuenta que uno es un método técnico que involucra al RNE y otro tiene factores que propone el SIGRID del Perú.

La vulnerabilidad sísmica es un tema de gran importancia en la actualidad, debido a sus beneficios positivos que acarrea al tener conocimiento del nivel de vulnerabilidad tanto con el método técnico y normativo del Perú, así como el de CENEPRED; para que de esa forma el centro poblado de Sacsamarca pueda acceder a esta información y prevenir los riesgos a los cuales se encuentra expuesto, asimismo, denotar el aporte que manifiesta el mejor método de evaluación y si cumple con efectividad mínima de 30% que asegure la evaluación.

1.3.2. Importancia

A inicios del 2024, el Perú subyace un silencio sísmico de 278 años desde el último movimiento telúrico inmenso ocurrido el 28 de octubre de 1746 con 8.8 grados de magnitud, por ello que existe una necesidad de determinar la evaluación de la vulnerabilidad y/o susceptibilidad al sismo en edificaciones; en este caso el centro poblado de Sacsamarca en Tarma, que es un sector donde predominan las construcciones de albañilería confinada; las cuales se realizan de manera típica, es decir con las mismas características arquitectónicas o cercanas a las mismas, ya que los constructores desconocen de análisis y diseño sismorresistente.

En síntesis, la investigación se instala a base de generar conocimiento respecto al nivel de vulnerabilidad sísmica estudiada en el centro poblado de Sacsamarca en Tarma con dos métodos, al ser una localidad con crecimiento poblacional y expansión territorial, donde predominan las viviendas de albañilería confinada; cuya evaluación se realizará con los métodos de Hirosawa y CENEPRED; por ende, el aporte viene dado por denotar si ambos métodos sirven para la evaluación y concuerdan mínimo en un 30% con validez, además de ello se estaría ampliando el conocimiento y actualizando la evaluación de vulnerabilidad sísmica que servirá para brindar posibles soluciones y minimizar el riesgo ante la presencia de sismos, cuyo silencio trae consigo incertidumbre de llegada.

1.4. Delimitación del área de Investigación

1.4.1. Delimitación Teórica

Este estudio solo realizará comparación de la vulnerabilidad sísmica con los métodos basados en Hirosawa y CENEPRED.

1.4.2. Delimitación Espacial

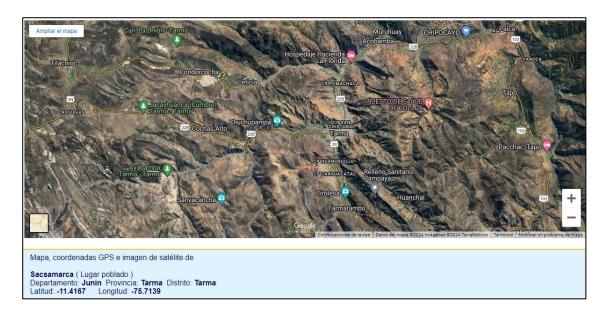
Este estudio se delimitará en las edificaciones que se encuentran ubicados en el centro poblado de Sacsamarca, Provincia de Tarma.

A continuación, se muestra el mapa y coordenadas de ubicación.

Figura 5

Mapa del Perú – Región Junín

Nota. Tarma es una provincia situada en la Región Junín, en la Sierra del mismo.


Figura 6

Tarma y sus distritos

Nota. Tarma posee nueve distritos, la zona que se estudió es Tarma como provincia y distrito en su Centro Poblado de Sacsamarca.

Figura 7Centro Poblado de Sacsamarca con coordenadas

Nota. Adaptado de Google Maps, 2023.

CAPÍTULO II. MARCO TEÓRICO

2.1. Antecedentes Internacionales y Nacionales

2.1.1. Antecedentes Internacionales

De Anda (2020) en su estudio titulado "Vulnerabilidad sísmica de edificios construidos antes de 1985 en la Ciudad de México a raíz del sismo del 19 de septiembre de 2017". Tiene por finalidad analizar la vulnerabilidad de las viviendas por el método Pushover. Adopta un enfoque mixto, con diseño experimental. Dicha metodología incluye varias fases: análisis estadístico de daños, creación de mapas de daños y de ductilidad y coeficiente sísmico, evaluación analítica, desarrollo de curvas de fragilidad, y cálculo de la probabilidad de excedencia de daño. Se estudió la correlación entre los daños y las respuestas a base de las demandas del sismo, permitiendo la creación de mapas cocientes frente el sismo y mapas de susceptibilidad. Se seleccionaron cinco edificios de mediana altura construidos antes de 1985 para análisis individual. Estos edificios, que están estructurados con columnas de concreto reforzado y losa plana, brindaron el resultado con mayor incidencia de daño frente al sismo. Se aplicó una metodología analítica basada en HAZUS del FEMA2003 y RISK-UE, realizando análisis estáticos no lineales (Pushover) para dar como resultado la curva a partir de un espectro. Los resultados fueron que el riesgo de vulnerabilidad sísmica es medio en la infraestructura en el 50% de las viviendas de Ciudad de México. Se concluye que para evitar riesgos de tener vivienda vulnerable su construcción debe seguir la Normativa vigente.

Villaba y Gónzalez (2020) elaboró el estudio denominado: "Evaluación de la vulnerabilidad sísmica para un sector de la comuna 2 del municipio de Dosquebradas-Risaralda-Colombia". El cual presenta por finalidad encontrar vulnerabilidad sísmica mediante el método (CAPRA-GIS). Adopta un enfoque mixto, diseño experimental. Se realiza un diagnóstico evaluativo de sismos en la comuna del municipio de Dosquebradas-Risaralda. La

evaluación se realizó utilizando la metodología de la Plataforma de Evaluación Probabilística de Riesgos Naturales (CAPRA-GIS) que permite generar evaluaciones paramétricas de conflicto sísmico en base al movimiento. Para realizar este trabajo se denota con visitas a campo en los predios, apoyadas en herramientas tecnológicas de geografía y análisis de información abstraída del municipio. Con los datos adquiridos, se realizó un conglomerado de datos y desarrollo en CAPRA-GIS. Como resultado, se identificaron con mayor intensidad de vulnerabilidad, con sus características por edificaciones según su tipo en diferentes ocasiones de sismos. Asimismo, se analizaron sus daños en pérdidas humanas y edificaciones. Se concluye que para obtener infraestructuras resistentes a movimientos sísmicos debe realizarse reforzamiento en zonas vulnerables.

Echevarría y Monroy (2021) publicó un estudio denominado: "Aplicación del método de índice de vulnerabilidad (Benedetti y Petrini) para evaluación de edificaciones de mampostería no reforzada en el barrío Surinama". Tuvo por finalidad analizar vulnerabilidad sísmica de las viviendas mediante el método Benedetti & Petrini Adopta un enfoque mixto, diseño experimental. Se aplicó el método basado en Benedetti y Petrini a edificaciones de albañilería no reforzada, el proceso comienza con verificar su geografía en este caso en Tunja, seguido del uso de Google Maps denotar el estado de la edificación, así como sus características, para ello es necesario ir a campo a verificar las edificaciones. Con la información recopilada, se planea crear una base de datos en el software Excel para denotar la vulnerabilidad de las estructuras en el lugar de estudio, proporcionando una visión más precisa con las características físico-espaciales de las viviendas. Los resultados muestran que las viviendas en la zona tienen una Vulnerabilidad Alta 80% y media de 20%. Se concluye que para obtener infraestructuras resistentes a movimientos sísmicos debe realizarse estudios previos ya que deben estar suelos estables.

Socarrás y Alvarez (2021) en su estudio denominado: "Limitaciones de los estudios de vulnerabilidad sísmica a edificaciones de hormigón en Santiago de Cuba". Su finalidad es analizar las vulneraciones sísmicas en las edificaciones en la ciudad. Adopta un enfoque mixto, diseño experimental. Los resultados fueron que se encontraron vulnerabilidades en las edificaciones en un 95% se realizó basado el método de evaluación. Se puede concluir que deben ser reforzadas las viviendas para así evitar cualquier posible desgracia producida por la naturaleza.

2.1.2. Antecedentes Nacionales

Quiroz y Vasquez (2020) elaboró el estudio denominado: "Análisis de la vulnerabilidad sísmica de las instituciones educativas públicas de nivel primario y secundario del distrito de Mochumí-Lambayeque". Tuvo por finalidad realizar la comparación de la vulnerabilidad sísmica en base al método Benedetti & Petrini y el método de INDECI. Adopta un enfoque mixto, diseño experimental. La investigación se desarrolló para evaluar la vulnerabilidad de las Instituciones Educativas (I.E) ante un posible sismo. Se utilizan dos métodos cualitativos para esta evaluación: el método de "Índice de Vulnerabilidad Sísmica – Benedetti & Petrini" y el método de INDECI. Además, se propone la creación de una base de datos que consolide los resultados, proporcionando información actualizada y organizada sobre el estado de cada Institución Educativa. Se estudiaron 20 Instituciones Educativas públicas de nivel primario y secundario. Los resultados muestran que ambos métodos tienen una exactitud mostrando que la entidad educativa tiene en su infraestructura un 70% Vulnerabilidad Alta. Se concluye que para obtener infraestructuras resistentes a movimientos sísmicos debe realizarse reforzamiento en zonas vulnerables.

Chancafe (2022) en su estudio denominado: "Evaluación de vulnerabilidad sísmica de viviendas en la ampliación Asentamiento Humano Vista Alegre – Casma, 2022." Tuvo por finalidad analizar la vulnerabilidad de las viviendas por método INDECI. Se estudió mediante

la metodología descriptiva correlacional de con un enfoque cuantitativo, de tipo aplicado. Además, de una población de 98 viviendas, se seleccionaron 26 como muestra. La observación fue el instrumento usado para recolectar información in situ y la guía de observación para aplicar el método basado en Benedetti y Petrini a una muestra de 26 viviendas de albañilería confinada. Se calificaron las viviendas desde A hasta D basándose en 11 parámetros. Es por ello que se concluyó que el 76.92% de las viviendas muestra una vulnerabilidad sísmica baja, lo que significa que resistirán por lo que es necesario un reforzamiento a largo plazo al tener vulnerabilidad moderada. Del total un 23.08% posee una vulnerabilidad media, es por ello que implica la necesidad de un reforzamiento a medio plazo. Por último, ninguna presenta una alta vulnerabilidad, lo que significa que no sufrirían gran daño ante un eventual sismo.

Pilco y Portugal (2022) generaron el estudio: "Vulnerabilidad sísmica mediante el análisis Pushover del Hospital de la Solidaridad, Tacna, 2022". El objetivo principal fue determinar la vulnerabilidad sísmica del hospital mediante el uso del análisis Pushover. Este método abarca el cargar a la edificación de modo incremental hasta identificar las zonas más vulnerables de la estructura, utilizando rótulas plásticas. Este estudio se basó en la observación, recopilación de información en forma de datos y análisis, de esa manera evaluar la vulnerabilidad sísmica del Hospital de la Solidaridad en Tacna durante el año 2022. Adopta un enfoque mixto, diseño experimental. El proceso comenzó con la inspección de la edificación, seguida de ensayos de esclerometría en puntos específicos de esta forma fue posible determinar el análisis con esfuerzos a la compresión, ello fue posible al tener que evaluar según las caracterizaciones de las viviendas, a partir de un conglomerado de información recopilados durante la investigación. Los resultados fueron que el riesgo de vulnerabilidad sísmica es medio en la infraestructura de la entidad. Se concluye que para evitar riesgos de tener vivienda vulnerable su construcción debe seguir la Norma técnica peruana.

Vera (2022) elaboró el estudio denominado: "Vulnerabilidad sísmica de las edificaciones de albañilería del Asentamiento Humano Los Triunfadores del distrito de Ate, 2022". Tiene por finalidad analizar la vulnerabilidad de las viviendas por método Guía de Benedetti – Petrini. Adopta un enfoque mixto, diseño no experimental. A partir de los resultados se puede denotar que el 49.32% de las edificaciones analizadas en el ámbito de estudio tiene baja vulnerabilidad y el 50.62% vulnerabilidad media por lo que pueden resistir un sismo moderado. Se concluye que para evitar riesgos en las infraestructuras cada cierto período hay que realizar visitas técnicas para realizar acciones reparaciones.

Gomez y Pardo (2023) desarrollaron una investigación en Pucallpa denominado: "Análisis y evaluación de la vulnerabilidad de los riesgos sísmicos de la Iglesia Santa Rosa de Lima – Distrito de Callería – Provincia de Coronel Portillo – Departamento de Ucayali". Se desarrolló el objetivo de determinar el nivel de desempeño, a partir de la determinación de la vulnerabilidad sísmica en la estructura mencionada, la metodología se describe a partir de la utilización del nivel descriptivo, no experimental, para un muestreo de 22 columnas y 3 vigas, se utilizó el método de Hirosawa, en conjunto con las directivas establecidadas por norma técnica peruana NTP E.030 para la asignación de valores según la estructura; es así que se llegó a la conclusión que el Is fue mayor que el Iso, es por ello que se finaliza la investigación mencionando es determinada como no vulnerable en ocasiones de sismos, teniendo desempeño funcional.

Choctalin y Marden (2023) generaron una investigación en Chachapoyas con el siguiente título: "Evaluación del nivel de riesgo sísmico aplicado la metodología CENEPRED en la localidad de Jalca, Chachapoyas, Amazonas, Perú 2022", cuyo objetivo fue evaluar el nivel de riesgo, en conjunto con la Vulnerabilidad aplicando la metodología de CENEPRED, la metodología utilizada fue de enfoque cuantitativo y diseño descriptivo, con población y muestra a la localidad Jalca, el método utilizado empieza con el análisis del peligro, seguido

de la vulnerabilidad mediante los formatos de recolección de datos, y finalmente el nivel de riesgo, generando un mapa de riesgo, que llegó a la conclusión de que el nivel de riesgo de la localidad es alto, manifestado en el mapa elaborado en ArcGIS.

2.2. Bases Teóricas

2.2.1. Sismo

Un terremoto es un movimiento repentino del suelo que se produce debido a la liberación de energía que se ha ido acumulando durante un período prolongado (Torres, 2020). A pesar de que la liberación de energía mediante el movimiento de placas tectónicas, es la variable primordial que causan los movimientos teóricos, no viene a ser la única. Los procesos asociados a la acumulación de energías y la liberación de las mismas pueden provocar terremotos. El tamaño de estos dependerá de varios factores, incluyendo el tamaño de la zona donde se acumula la tensión (Cuéllar et al., 2010).

Según Cuéllar et al. (2010) plantea que, las causas más comunes de los terremotos se pueden clasificar en orden de importancia como sigue:

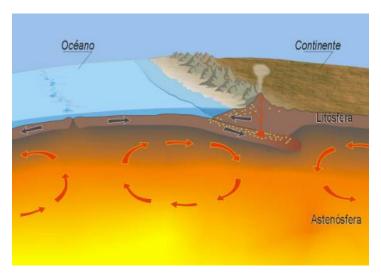
Tectónica: Estos terremotos son causados por la liberación de energía a través del movimiento de las placas tectónicas que forman la corteza terrestre. Afectan a grandes áreas y son la causa más común de terremotos.

Volcánica: Estos terremotos son menos comunes; se producen cuando una erupción volcánica es violenta y provoca fuertes temblores que afectan principalmente a las áreas cercanas. Sin embargo, su alcance es limitado en comparación con los terremotos de origen tectónico.

Hundimiento: Estos terremotos ocurren cuando la erosión de las aguas subterráneas en el interior de la corteza terrestre deja un vacío que finalmente cede posterior al peso superior, generando de este modo los terremotos. Son poco frecuentes y de alcance limitado.

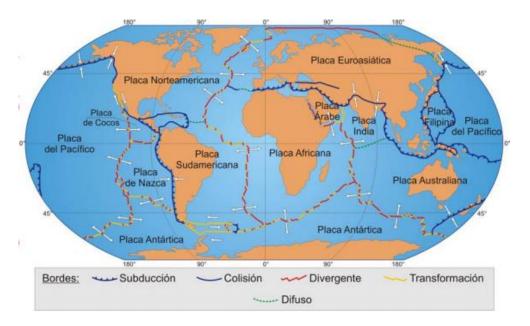
Deslizamientos: Es el proceso por medio del cual a partir de la gravedad y el peso de montañas sufren de aplastamiento y pueden causar terremotos al provocar deslizamientos en los lugares exactos de falla. Sin embargo, son de poca gravedad.

Explosiones atómicas: Estas son realizadas por los humanos y parecen tener una relación con los movimientos sísmicos (Villareal, 2022).


Falconi (2019) señala que, todos los terremotos se caracterizan por tener un hipocentro y un epicentro. El hipocentro viene a estar definido como origen del terremoto y se encuentra en la profundidad de la tierra. El epicentro, por otro lado, viene a estar definido como el exterior, es decir, superficie de la tierra directamente encima del hipocentro y por ende es donde la mayor intensidad es reflejada.

Placas tectónicas

J. Hutton explicó los cambios de la corteza terrestre en su libro Teoría de la Tierra publicado en 1795. Él argumentó que la tierra se comportaba como una máquina térmica y debido a dichos procesos procedió a explicar el comportamiento terrestre. No obstante, en el siglo XIX aparecieron nuevas teorías que sirvieron de base para la teoría de Placas Tectónicas (Muñoz, 2021). Esta teoría analizada respecto de la tierra posee una capa sólida exterior de un espesor de 100 km cuyo nombre es litósfera. La parte superior de esta, viene a estar dada en el fondo marino y la parte superficial de los continentes como se muestra en la figura.


Figura 8

Comportamiento de las Placas tectónicas

También, las placas tectónicas se clasifican en dos ramas. La de mayor dimensión: Pacífico, América, Euroasiática, Australia-India, África y Antártida y las de menor dimensión como la placa Nazca como se muestra en la figura.

Figura 9 *Mapas de Placas tectónicas*

2.2.2. Sismicidad

Actividad sísmica, que abarca el movimiento de un territorio por medio de placas tectónicas y ondas sísmicas en un período de tiempo; la sismicidad de una zona para ser clasificada una vez efectuado el evento sísmico es medida en función de su magnitud y su profundidad (Bedoya, 2010), así como estas se generan mapas que ayudan a la visualización de áreas según la magnitud del sismo, en este caso en Perú se encuentra registrado en la norma E.030. Diseño Sismorresistente.

En el mundo se realizan registros de los eventos sísmicos, todo ello para zonificar los lugares con mayor incidencia sísmica y riesgo que tendrán sus habitantes, toda esta información se registran mediante el paso de las ondas y su intensidad, lo cual se procesa en gabinete mediante softwares con tecnología para el análisis y esto contribuye al brindar los parámetros sísmicos. (Candebat et al., 2020).

2.2.3. Sismo

Se considera sismo al movimiento provocado mediante ondas, al darse la liberación de energía en un punto de colisión al interior de la tierra en las placas tectónicas, posee un epicentro e hipocentro; cuando se llega a producir este evento natural, la energía se puede ver transformada en dos agentes, una y en su menor cantidad en calor y la otra en ondas propagadas ambas por el estrato interno de la tierra, que van a desplazarse en diversas trayectorias no sólo horizontales y verticales, sino en distintos ángulos, que llegan a la superficie, y el impacto es causa de daño a terrenos, viviendas, servicios y un peligro para la humanidad Candebat et al. (2020).

2.2.4. Peligrosidad sísmica

Según Pere (2014) cita que, la peligrosidad viene reflejada en una posible ocurrencia de un evento que afecta físicamente, esto a partir de un terremoto o sismo; como fenómenos que lo producen, pueden ser los movimientos de los terrenos, deslizamiento de taludes, licuefacciones, inundaciones y huaycos, tsunamis, y cualquier otro fenómeno afecta la integridad.

2.2.5. Vulnerabilidad sísmica

La vulnerabilidad se refiere al grado de susceptibilidad de ocurrencia, o también llamado la predisposición que se tiene al encontrarse expuesto a una amenaza; en este caso, si alineamos el concepto a vulnerabilidad sísmica, es referida a toda estructura o elemento estructural con prospección de susceptibilidad a sufrir un daño y por ende una pérdida, cuantificada en material o humano; la vulnerabilidad sísmica no solo es aplicado a edificaciones de gran envergadura como son hospitales, bancos, colegios, municipios, entre otros de magnitud grande, sino que este concepto es aplicado a cualquier obra de ingeniería, sean edificaciones, carreteras, represas, entre otros a cualquier nivel (Yépez et al., 1995, p. 32).

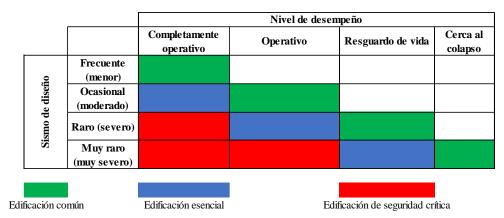
2.2.6. Riesgo sísmico

Según Candebat et al. (2020) el riesgo sísmico es la probabilidad de que un peligro pueda materializarse y tiene potencial de causar daños tanto sociales, materiales, humanas y económicos a partir de la propagación de un sismo.

2.2.7. Escenario de peligro sísmico

Existen cuatro niveles de peligro sísmico que se definen en función al período de retorno de evento o a la probabilidad de excedencia en 50 años (Norma Técnica E.030, 2018). Está clasificación se indica en la tabla 1.

Tabla 1 *Escenarios de peligro sísmico*


Nivel de sismo	Sismo	Período de retorno T _r (años)	Probabilidad de excedencia en 50 años	Tasa anual de excedencia (1/T _r)
1	Frecuente (menor)	45	111%	0.02222
2	Ocasional (moderado)	75	67%	0.01333
3	Raro (severo)	475	11%	0.00211
4	Muy raro (muy severo)	970	5%	0.00103

Nota. Tomado de la Norma Técnica E.030, 2018.

Matriz de objetivos de diseño sísmico

Esta matriz establece los daños permisibles o aceptables por cada evento sísmico según la clasificación de la edificación como se muestra en la figura. Esta matriz nos permite identificar el sismo esperado al que nuestra estructura debe responder de forma óptima.

Figura 10Nivel de desempeño sísmico según tipo de edificación

Nota. Tomado de Muñoz (2020).

2.2.8. Zonificación sísmica

En el mapa del Perú se puede apreciar que el territorio se dividió en cuatro zonas sísmicas según el registro a lo largo del tiempo de cada una de ellas y así cada uno posee un factor de aceleración. Esta división de muestra en la figura.

Figura 11 *Mapas de Placas tectónicas*

Nota. Tomado de la Norma Técnica E.030, 2018.

Según está división, el lugar donde se ejecutará la presente investigación se detalla en la tabla 2.

Tabla 2

Zonificación del área de estudio

Región	Provincia	Distrito	Zona Sísmica	Z
Junín	Tarma	Tarma	3	0.35

Nota. Extraído de Muñoz, 2020.

También, se debe considerar los factores de tipo de suelo en función de la zona sísmica que se muestran en la tabla 3.

Tabla 3Factor de suelo en función de zona sísmica

Zona	Suelo				
	S_0	S_1	S_2	S_3	
${f Z}_4$	0.80	1.00	1.05	1.10	
\mathbb{Z}_3	0.80	1.00	1.15	1.20	
${f Z}_2$	0.80	1.00	1.20	1.40	
\mathbf{Z}_1	0.80	1.00	1.60	2.00	

Nota. Tomado de la Norma Técnica E.030, 2018.

Tabla 4 $Períodos T_P y T_L en función del tipo de suelo$

Dowladas				
Períodos	S_0	S_1	S_2	S_3
$T_{P}(S)$	0.3	0.4	0.6	1.0
$T_{L}(S)$	3.0	2.5	2.0	1.6

Nota. Tomado de Norma Técnica E.030, 2018.

Factor de amplificación sísmica (C)

Según la (Norma Técnica E.030, 2018) se definen los siguientes factores de amplificación.

$$T < T_P$$
 $C = 2.5$

$$T_P < T < T_L$$
 $C = 2.5 * \left(\frac{T_P}{T}\right)$
$$T > T_L$$
 $C = 2.5 * \left(\frac{T_P - T_L}{T^2}\right)$

Categoría de la edificación y factor de uso (U)

Es necesario denotar la categoría y factor de uso, es por ello que se presenta en la siguiente tabla la que se utilizará en la presente investigación.

Tabla 5Categoría y factor de uso de viviendas

Categoría	Descripción	Factor U
Edificaciones comunes	Viviendas, oficinas, hoteles, restaurantes, etc.	1

Nota. Tomado de la Norma Técnica E.030, 2018.

Factores de irregularidad

La normativa peruana, denota dos tipos de irregularidades, las cuales se pueden ver a continuación en la siguiente tabla:

Tabla 6 *Irregularidad de altura*

Irregularidad estructural en altura	Factor de irregularidad Ia
Rigidez - Piso blando	0.75
Resistencia - Piso débil	0.73
Extrema de rigidez	0.5
Extrema de resistencia	0.3
Masa o peso	0.9
Geométrica vertical	0.9
Sistemas resistentes	0.8
Discontinuidad extrema de sistemas resistentes	0.6

Nota. Tomado de la Norma Técnica E.030, 2018.

Tabla 7 *Irregularidad de planta*

Irregularidad estructural de planta	Factor de irregularidad
Torsional	0.75
Torsional extrema	0.6
Esquinas entrantes	0.9
Discontinuidad del diafragma	0.85
Sistemas no paralelos	0.9

Nota. Extraído de la Norma Técnica E.030, 2018.

2.2.9. Vulnerabilidad sísmica

La vulnerabilidad se refiere al grado de susceptibilidad de ocurrencia, o también llamado la predisposición que se tiene al encontrarse expuesto a una amenaza; en este caso, si alineamos el concepto a vulnerabilidad sísmica, es referida a toda estructura o elemento estructural con prospección de susceptibilidad a sufrir un daño y por ende una pérdida, cuantificada en material o humano; la vulnerabilidad sísmica no solo es aplicado a edificaciones de gran envergadura como son hospitales, bancos, colegios, municipios, entre otros de magnitud grande, sino que este concepto es aplicado a cualquier obra de ingeniería, sean edificaciones, carreteras, represas, entre otros a cualquier nivel (Yépez et al., 1995, p. 32).

2.2.10. Métodos de evaluación de la vulnerabilidad sísmica

Para realizar los estudios y la evaluación de vulnerabilidad sísmica existen diversas metodologías, ello depende del tipo de obra de ingeniería, del proceso constructivo, de los materiales utilizados, el sistema constructivo, entre otros. Entre los más usados tenemos el método de los autores Bennedeti Petrinni, Chang, el método que usa Defensa Civil en el Perú, el método de CENEPRED del SIGRID, el método de Hirosawa; estas últimas adaptada a edificaciones de albañilería confinada, que sirven para medir la vulnerabilidad de viviendas en grandes áreas, en este caso aplicados en el Centro Poblado de Sacsamarca – Tarma.

2.2.11. Método de CENEPRED

Según Candebat, et al (2020) "Es un manual que evalúa factores de riesgos que se originan a partir de los fenómenos naturales catastróficos, por lo que puede definir vulnerabilidad al concepto de susceptibilidad que se da respecto a las personas, a la estructura construida, a la población en general y esto que afecta a las actividades económicas, sociales, culturales; y dejan un factor de daño a causa del peligro", puede darse en:

- Exposición es mostrarse en la zona de estudio.
- Fragilidad está relacionado a la exposición que se encuentra
- Resiliencia es la capacidad de recuperación del hombre
- Análisis de diferentes elementos que se encuentran expuestos como son la sociedad y su eje el ser humano, elementos económicos, así como ambientales, se considera que cuanto mayor es la exposición mayor es la vulnerabilidad.

2.2.12. Descripción de las dimensiones del método de CENEPRED

2.2.12.1. Dimensión social

Se refiere a los modos de actuar de un lugar, en este caso del centro poblado o sector que puede ser afectado a través de un peligro, también se refiere a su cultura, comportamientos y modo de organizarse.

2.2.12.2. Dimensión económica

Se refiere a la condición monetaria, respecto a la cantidad de recursos económicos, es decir, si existe falta o escaso dinero; ello viene reflejado en la susceptibilidad frente al uso inadecuado para gestionar un riesgo, es decir cómo enfrenta la respuesta al haber sucedido el hecho.

2.2.12.3. Dimensión ambiental

Se refiere a la forma en el que la unidad, sea centro poblado o comunidad da uso de manera insostenible a los recursos ambientales, haciendo que esto afecte a los ecosistemas y puede resultar en efectos negativos por la acción de un peligro.

Se debe realizar el análisis de vulnerabilidad mediante los tres parámetros, estos vienen a ser la resiliencia, exposición y fragilidad en cada dimensión; asimismo, menciona la guía que si no se cuenta información del mismo se debe omitir en el análisis de vulnerabilidad, es posible omitir esa dimensión, justificando en el informe la razón de tal decisión. Es importante tener en cuenta que los cuadros que se muestran para caracterizar la vulnerabilidad frente a un sismo son puramente referenciales. Los parámetros en cada una de las dimensiones tienen que ser evaluados según las características específicas de vulnerabilidad de la zona geográfica que se está estudiando; esta evaluación se realiza mediante los pesos ponderados en cada ítem y el caso en el que se encuentra el área estudiada.

2.2.13. Descripción de los factores del método de CENEPRED

Según Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres (CENEPRED, 2014); existen 3 grupos de factores de la vulnerabilidad, las cuales se detallan a continuación:

2.2.13.1. Exposición

La exposición se refiere a la susceptibilidad respecto de un peligro, al estar la edificación expuesta, en la zona donde se impacta el peligro; ello se refleja en función del ambiente, puede deberse a crecimientos poblacionales no planificados, urbanización no adecuada, entre otros; es por ello que la exposición y la vulnerabilidad son directamente proporcionales.

 Tabla 8

 Parámetros de exposición física según localización de vivienda

	Parámetro	Localización vivienda	Peso por	nderado
	FS21	Muy cercana 0.2 km a 0 km	PFS21	0.503
es	FS22	Cercana 0.2 km - 1 km	PFS22	0.26
ptores	FS23	Medianamente alejada 1 km - 3 km	PFS23	0.134
escrij	FS24	Alejada 3 km a 5 km	PFS24	0.068
Des	FS25	Muy alejada > 5 km	PFS25	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

2.2.13.2. Fragilidad

La fragilidad, se refiere a la debilidad frente a un peligro; esto se refleja en construir sin seguir los lineamientos de la normativa de construcción, formas inadecuadas de construir, uso de materiales inadecuados en la construcción; este componente es también reflejado de manera directamente proporcional a la vulnerabilidad.

Tabla 9Fragilidad física según el material de construcción

	Parámetro	Material predominante	Peso por	nderado
	FS21	Estera, madera o triplay	PFS21	0.503
ses	FS22	Adobe o tapia	PFS22	0.26
escriptores	FS23	Quincha (caña con barro)	PFS23	0.134
cri	FS24	Piedra con cemento	PFS24	0.068
Des	FS25	Ladrillo o bloque de cemento	PFS25	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 10Porcentaje de fragilidad social según las edades

P	Parámetro	Rango de edades	Peso po	nderado
	FS1	De 0 a 3 años y mayor de 65 años	PFS1	0.503
es	FS2	De 4 a 12 y de 60 a 64 años	PFS2	0.26
ptores	FS3	De 13 a 15 años y de 50 a 59 años	PFS3	0.134
scrij	FS4	De 16 a 29 años	PFS4	0.068
Des	FS5	De 30 a 49 años	PFS5	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres,

Tabla 11Parámetros según fragilidad económica

	Parámetro	Empleo	Peso p	onderado
	FS1	Obrero	PFS1	0.503
sə	FS2	Trabajador familiar no remunerado	PFS2	0.26
otoi	FS3	Empleado	PFS3	0.134
escriptores	FS4	Trabajador independiente	PFS4	0.068
Des	FS5	Empleador	PFS5	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

2.2.13.3. Resiliencia

Podemos decir que el enfrentar un peligro con cierta capacidad, viene a ser la resiliencia, según las condiciones que subyace la comunidad; en este parámetro se define la relación inversamente proporcional, es decir, a mayor resiliencia, se dará menor vulnerabilidad.

Tabla 12Resiliencia física de viviendas

	Parámetro	Porcentaje de viviendas	Peso pondera	ado:
ipt	FS26	V < 20%	PFS26	0.503
escript s	FS27	$30\% < V \le 20\%$	PFS27	0.26
De	FS28	50% < V <=30%	PFS28	0.134
J	FS29	$70\% < V \le 50\%$	PFS29	0.068
	FS30	V > 70%	PFS30	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

2.2.14. Niveles de Vulnerabilidad del método de CENEPRED

El CENEPRED (2018), muestra los estratos de vulnerabilidad, denotado en bajo, medio, alto y muy alto, que se presentan en la tabla 13.

Tabla 13Niveles de vulnerabilidad del método de CENEPRED

Nivel	Descripción	Rango
muy alta	Grupo etarío: de 0 a 5 años y mayor a 65 años. Servicios educativos expuestos: mayor a 75% del servicio educativo expuesto. Servicios de salud terciarios expuestos: mayor a 60% del servicio de salud expuesto. Materia de construcción: estera/cartón. Estado de conservación de la edificación: Muy malo. Topografía del terreno: 50% ≤P≤80%. Configuración de elevación de la edificación: 5 pisos. Incumplimiento de procedimientos constructivos de acuerdo a normatividad vigente: mayor a 80%. Localización de la edificación: Muy cerca 0 a 0.20km. Servicios de agua y desagüe: mayor a 75% del servicio expuesto. Servicio de empresas eléctricas expuestas: mayor a 75%. Servicio de empresas de distribución de combustible y gas: mayor a 75%. Servicio de empresas de transporte expuesto: mayor a 75%. Área agrícola: mayor a 75%. Servicios de telecomunicación: mayor a 75%. Antigüedad de construcción: de 40 a 50 años. PEA desocupada: escaso acceso y la no permanencia a un puesto de trabajo. Organización y capacitación institucional: presentan poca efectividad en su gestión, desprestigio y aprobación popular. Deforestación: áreas sin vegetación, terrenos eriazos. Flora y fauna: 76 a 100% expuesta. Pérdida de suelo: erosión provocada por lluvias. Pérdida de agua: demanda agrícola	0.260 <u><</u> R<0.503
alta	y pérdida por contaminación. Grupo etarío: de 5 a 12 años y de 60 a 65 años. Servicios educativos expuestos: menor o igual a 75% y mayor a 50% del servicio educativo expuesto. Servicios de salud terciarios expuestos: menor o igual a 60% y mayor a 35% del servicio de salud expuesto. Materia de construcción: madera. Estado de conservación de la edificación: Malo. Topografía del terreno: 30% ≤P≤50%. Configuración de elevación de la edificación: 4. Actitud frente al riesgo: escasamente provisoria de la mayoría de la población. Localización de la edificación: cercana 0.20 a 1 km. Servicios de agua y desagüe: menor o igual 75% y mayor a 50% del servicio expuesto. Servicios de agua y desagüe: mayor a 75% del servicio expuesto. Servicio de empresas eléctricas expuestas: menor a 75% y mayor a 50%. Servicio de empresas de distribución de combustible y gas: menor o igual 75% y mayor a 50%. Servicio de empresas de transporte expuesto: menor o igual 75% y mayor a 50%. Servicios de telecomunicación: menor o igual 75% y mayor a 50%. Servicios de telecomunicación: menor o igual 75% y mayor a 50%. Área agrícola: menor o igual 75% y mayor a 50%.	0.134≤R<0.260

baja

de 1 a 3 km. Servicios de agua y desagüe: menor o igual 50% y mayor a 25% del servicio expuesto. Servicios de agua y desagüe: mayor a 75% del servicio expuesto. Servicio de empresas eléctricas expuestas: menor o igual a 25% y mayor a 10%. Servicio de empresas de distribución de combustible y gas: menor o igual a 50% y mayor a 25%.

Grupo etarío: de 12 a 15 años y de 50 a 60 años. Grupo etarío: de 5 a 12 años y de 60 a 65 años. Servicios educativos expuestos: menor o igual a 50% y mayor a 25% del servicio educativo expuesto. Servicios de salud terciarios expuestos: menor o igual a 35% y mayor a 20% del servicio de salud expuesto. Materia de construcción: quincha (caña con barro). Estado de conservación de la edificación: Regular. Topografía del terreno: 20% ≤P≤30%. Actitud frente al riesgo: parcialmente provisoria de la mayoría de la población, asumiendo el riesgo sin implementación de medidas para prevenir. Localización de la edificación: medianamente cerca

Grupo etarío: de 15 a 50 años. Grupo etarío: de 5 a 12 años y de 60 a 65 años. Servicios educativos expuestos: menor o igual a 25% del servicio educativo expuesto. Servicios de salud terciarios expuestos: menor o igual a 20% del servicio de salud expuesto. Materia de construcción: ladrillo o bloque de cemento. Estado de conservación de la edificación: Bueno a muy bueno. Topografía del terreno: P ≤10%. Configuración de elevación de la edificación: de 2 pisos. Incumplimiento de procedimientos constructivos de acuerdo a normatividad vigente: menor a 40%. Actitud frente al riesgo: parcial y/o provisoria de la mayoría o totalidad de la población, implementando medidas para prevenir el riesgo. Localización de la edificación: alejada a muy alejada mayor a 3km

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres (CENEPRED, 2018).

2.2.15. Método Hirosawa

Según Pan American Health in Publication Data (2000), desde 1977 el Ministerío de Construcción de Japón ha promovido el desarrollo de un procedimiento de multinivel para la evaluación de la vulnerabilidad sísmica de edificaciones, en un inicio de concreto armado.

El método basado en la propuesta de Hirosawa ha sido desarrollado por el Ministerío de Construcción de Japón, en la forma de evaluar la seguridad sísmica de edificaciones de concreto armado. El modelo propone tres niveles que se pueden evaluar según la necesidad,

desde el más simple al detallado. Esto es basado en el análisis del comportamiento sísmico de la nivel (piso) de la edificación en cada dirección principal en planta.

Es un conjunto de aplicaciones matemáticas de origen nipón; este método tiene incidencia en la obtención de la resistencia última respecto al comportamiento de una edificación, haciendo que denote la vulnerabilidad del mismo, inicialmente este método fue creado para edificaciones de concreto armado; teniendo así una modificación adaptada para albañilería confinada; se evalúa mediante el análisis de mecanismo de colapso en los elementos estructurales que permite denotar la capacidad máxima de soporte del sistema, analizando la estructura por su morfología, e nivel de daño, el deterioro a través del tiempo e incidencias que se pueden presentar en la zona de evaluación (MINSA/ECHO/OPS-OMS, 1997).

Método de primer orden: Este nivel de análisis se basa en la forma de los elementos geométricamente las estructuras, y tiene como objetivo evaluar las edificaciones de albañilería y concreto armado, a partir de un diagnóstico de peligro sísmico en los sistemas estructurales que se mencionaron.

Método de segundo orden: Este nivel se basa en encontrar la resistencia última de la edificación, asumiendo como parte del análisis el edificio cortante. Es por ello que se menciona, que, al tener un diafragma rígido, es decir, la losa aligerada, procede a colapsar los elementos más frágiles, luego de ello van a fallar los elementos dúctiles, esto por alcanzar su mayor capacidad en el análisis espectral. Este análisis considera de igual modo la forma de la edificación, el daño en su mayor nivel y la geometría de la vivienda, asimismo, el deterioro en un período de tiempo, es importante rescatar que este método en el segundo orden, brinda importancia a las condiciones locales de la zona de estudio.

Método de tercer orden: Este nivel toma como base los niveles anteriormente analizados, poniendo el sistema hasta un análisis en colapso, usa la metodología de análisis

28

tiempo – historia con un sistema de estructuras no lineales; por lo que este nivel debe poseer

con roturas plásticas y que sean suficientemente resistentes a este método de fallo.

Según Iglesias (1986), el método que se está detallando fue creado en sus inicios para la

evaluación de estructuras de concreto armado de entre seis a ocho pisos que tengan pórticos o

muros reforzados. Sin embargo, en el año 2021 se amplió y modificó este método para ser

aplicados en albañilería, estructuras de hormigón, y mixtas.

Este procedimiento ha sido mejorado a lo largo del tiempo y fue publicado en el Japón

Building Disaster Prevention Association (Hirosawa 1992; BRI 2001)

Para determinar la vulnerabilidad estructural, se debe considerar que:

Si Is>Iso, se puede afirmar que la edificación en estudio tendrá un comportamiento

sísmico seguro frente a acciones sísmicas.

Si Is<Iso, el análisis nos manifiesta que la edificación se considerará como inseguro; y

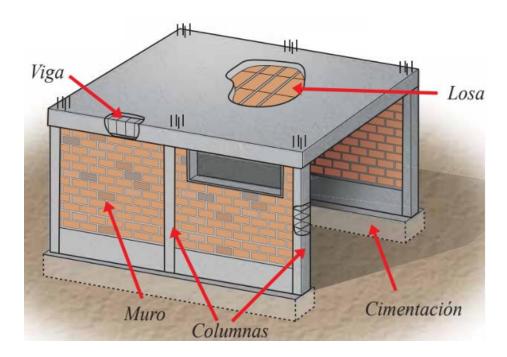
tiene un comportamiento incierto frente a acciones sísmicas.

Donde:

Is: Nivel de capacidad de la estructura a evaluar

Iso: Demanda requerida

Figura 12 *Metodología Hirosawa*


Nota. Pan American Health in Publication Data (2000).

2.2.1. Albañilería confinada

La albañilería confinada es un tipo de construcción compuesto por muros de ladrillos que están enmarcados por columnas de amarre y vigas soleras. El proceso constructivo de este método de construcción consiste en el levantamiento de los muros de ladrillo, seguidamente se continúa con el vaciado de las columnas de amarre y, por último, se construye la losa de techo junto con las vigas soleras (San Bartolomé, 1994). En la figura se muestran los elementos estructurales que componen el sistema de albañilería confinada.

Figura 13

Elementos de albañilería confinada

Nota. Tomado de Orihuela et al., (2010) donde se detallan los elementos estructurales de una vivienda de albañilería confinada.

Unidades de albañilería

Los elementos considerados como unidades de albañilería, se utilizan en la construcción con diferentes usos, estos son ubicados según su tipo y lugar en el que ocupan en la estructura y el sistema estructural; es así que la normativa de la E-070, establece claramente en sus líneas, que, es necesario considerar la unidad correcta en un sistema de albañilería confinada, es así que, no se pueden usar ladrillos King Kong en el sistema de muros portantes, ni panderetas en los tabiques.

Por consiguiente, se prohíbe el uso de ladrillos pandereta en los muros portantes con excepción de las edificaciones, de no mayores a 2 pisos, que se construyan en la zona sísmica 1 tal como se detalla en la tabla 14.

Tabla 14Limitaciones en el uso de unidades de albañilería para fines estructurales

Tipo Z		sísmica 2, 3 y 4	Zona sísmica 1
	Muro	Muro portante en	Muro portante en todo
	portante en	edificio entre 1 a 3	el edificio
	edificio	pisos	
	mayor a 4		
	pisos		
Sólido artesanal	No	Sí. Hasta 2 pisos	Sí
Sólido industrial	Sí	Sí	Sí
Alveolar	Sí. Celdas	Sí. Celdas	Sí. Celdas
	totalmente	parcialmente rellenas	parcialmente rellenas
	rellenas de	de grout	de grout
	grout		
Hueca	No	No	Sí
Tubular	No	No	Sí. Hasta 2 pisos

Nota. Adaptado de la Norma Técnica E.070, 2020.

Es necesario tener en consideración que, cada unidad de albañilería debe cumplir con las especificaciones requeridas, cumpliendo con la calidad necesaria, y siempre teniendo la verificación del porcentaje de vacíos menor o igual al 30% del área total de asentamiento; asimismo tener consideraciones como el alabeo, y el porcentaje de absorción, que se presentan en la siguiente tabla 15.

Tabla 15Características de unidades de albañilería

Tipo	Denominaci ón		Resistencia a la	Alabeo (máximo	Variación de la dimensión (máxima en porcentaje) %		
			compresió n (kg/cm²)	en mm)	hasta 100 mm	hasta 150 mm	más de 150 mm
Ladrillo I	King Artesa	Kong nal	4.9	10	8	6	4
Ladrillo II			6.9	8	7	6	4
Ladrillo III			9.3	6	5	4	3
Ladrillo IV	King Indust	Kong rial	12.7	4	4	3	2
Ladrillo V	King Concre	Kong eto	17.6	2	3	2	1
Bloque P			4.9	4	4	3	2
Bloque NP			2.0	8	7	6	4

Nota. Tomada de la Norma Técnica E.070, 2020.

Mortero

El mortero es una mezcla compuesta por agregado fino y materiales cementantes, en la cual la relación de agua - cemento debe ser la óptima para que sea trabajable, fluida y evitar segregaciones o cangrejeras. Con respecto al cemento, se puede usar cemento Portland tipo I y II o cementos adicionados como el IP (Norma E 0.70, 2020). Este material es muy importante en el sistema de albañilería confinada debido a que une las unidades de arcilla para armar el muro portante. Por ello, se debe realizar un adecuado estudio de las propiedades de los agregados con el fin de lograr una adecuada resistencia del mortero. La dosificación respectiva se muestra en la tabla 16.

Tabla 16Dosificación según tipo de mortero

Tipo	Cemento	Cal	Arena	Usos
P 1	1	0 a 1/4	3 a 3 1/2	Muros portantes
P 2	1	1 a 1/2	4 a 5	Muros portantes
NP	1	-	Hasta 6	Muros no portantes

Nota. Tomada de la Norma Técnica E.070, 2020.

También existe el criterio de dosificación del mortero de CAPECO (Cámara Peruana de Construcción, 2003). En este se recomienda considerar un desperdicio del mortero de 10% y establece las dosificaciones que se muestran en la tabla 17.

Tabla 17Dosificación de mortero de CAPECO

		Morteros: material por m ³			
Proporción c: a	Relación a/c	Cemento (bolsas)	Arena (m³)	Agua (Litros)	
1:1	0.29	23.2	0.66	286	
1:2	0.43	15.2	0.86	277	
1:3	0.57	11.2	0.96	272	
1:4	0.72	8.9	1	272	
1:5	0.85	7.4	1.05	268	
1:6	1.00	6.3	1.07	269	
1:7	1.14	5.5	1.1	267	
1:8	1.29	4.9	1.11	268	

Nota. Lista de dosificaciones tomadas de la Cámara Peruana de Construcción, 2003.

Acero de refuerzo

Son las barras de acero que se utilizan en las columnas de amarre, vigas soleras y losas. Estas deben cumplir con las especificaciones de la Norma Barras de Acero con Resaltes para Concreto Armado (NTP 341.031). En las columnas se debe utilizar barras corrugadas de calidad garantizada por los fabricantes y de acuerdo a las especificaciones de la normativa. Se debe considerar que los aceros cumplan con los criterios que establece la norma. En la tabla 18 se muestran las características principales de los aceros.

Tabla 18Propiedades de aceros

Diámetro (mm)	Área nominal (mm²)	Peso nominal (Kg/ml)	Peso mínimo (Kg/ml)
6 mm	28	0.222	0.207
8 mm	50	0.395	0.371
3/8"	71	0.56	0.526
12 mm	113	0.888	0.835
1/2"	129	0.994	0.934
5/8"	199	1.552	1.459
3/4"	284	2.235	2.101
1"	510	3.873	3.735
1 3/8"	1006	7.907	7.433

Nota. Tomado de Medina y Blasco (2022).

Características de la albañilería confinada

Las conexiones entre el muro portante y la columna de amarre pueden ser de manera endentada o a ras como se indica en las figuras 4 y 5. En el caso de ser endentada, la longitud de la unidad de albañilería debe ser menor o igual a 5 cm y debe estar limpia antes del vaciado (San Bartolomé, 1994). Del mismo modo, si el muro es a ras de la columna, se debe incluir mechas o anclajes de varillas de acero de 6 mm de diámetro que se incrusten como mínimo 40 cm dentro del muro de albañilería y 12.5 cm dentro de la columna, incluyendo un doblez vertical 10 cm a 90°. Se debe considerar una cuantía de 0.001 (Norma Técnica E.070, 2020).

2.3. Definiciones de términos básicos

- Colapso: es una destrucción en forma repentina de una estructura
- Confinamiento: Conjunto de elementos que tiene por fin dar ductilidad al muro portante
- Construcciones de albañilería: son estructuras con bases definidas
- Daño probable: es la posible destrucción o parcial de una estructura
- Desastre: es un acontecimiento de magnitud destructiva
- Epicentro: es lugar donde se produjo movimiento telúrico
- Infraestructura: Grupo de elementos estructurales de una edificación que contempla los diferentes tipos de instalaciones sean sanitarias, eléctricas, domésticas; y por ende su vida útil.
- Sistema estructural: Conjunto de elementos partes de un sistema que fueron diseñados para el soporte de distintos tipos de cargas y que se clasifican según los materiales

CAPÍTULO III. HIPÓTESIS Y VARIABLES DE INVESTIGACIÓN

3.1. Hipótesis

3.1.1. Hipótesis Principal

La evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED, de edificaciones del centro poblado de Sacsamarca, Tarma; muestran que más del 30% son vulnerables, con ambos métodos.

3.1.2. Hipótesis Secundarias

- HS1: Se podrá conocer los índices y el nivel vulnerabilidad sísmica de las edificaciones del centro poblado de Sacsamarca basado en el método de Hirosawa.
- HS2: Se podrá establecer el nivel vulnerabilidad sísmica de las edificaciones del centro poblado de Sacsamarca basado en el método de CENEPRED.

3.2. Variables e Indicadores

3.2.1. Variables

Hernández y Mendoza (2018) mencionan que la variable es aquella cualidad que se puede medir y tiende a cambiar o modificar, teniendo importancia en la investigación al ser eje fundamental para analizar, en este caso se va a analizar dos variables.

- a) Variable 1: Vulnerabilidad sísmica con los métodos de Hirosawa y CENEPRED.
- b) Variable 2: Edificaciones de albañilería confinada de 3 niveles.

3.3. Operacionalización de las variables

Tabla 19 *Operacionalización de las variables*

Variable	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Escala Medición	De
Variable 1	Es la predisposición al daño o la escala de susceptibilidad que presenta una	Para ello las edificaciones deben presentar características que	Método de Hirosawa	Vulnerabilidad estructuralDemanda sísmica	Nominal	
Vulnerabilidad sísmica	edificación o elementos ante una fuente de peligro (Ramírez y Miguel, 2024).	hacen que sea segura o peligrosa para ser habitada por el ser humano.	Método de CENEPRED	 Dimensión social Dimensión económica Dimensión ambiental 	Razón	
Variable 2 Edificaciones	Son aquellas estructuras donde se va habitar por la persona dándole uso según el tipo de necesidad (Condezo y Rodriguez, 2024).	Las viviendas habitadas deben cumplir requisitos mínimos de seguridad para así proteger a las personas que estén dentro.	Edificaciones de albañilería confinada de 3 niveles	les	Nominal	

Nota. Elaboración Propia

CAPÍTULO IV. DISEÑO DE LA INVESTIGACIÓN

4.1. Metodología de la Investigación

4.1.1. Enfoque de la Investigación

Según Hernández y Mendoza (2018) el presente trabajo fue de enfoque cuantitativo, al tener que evaluar la vulnerabilidad de las viviendas y generar estadísticas en función de cada método para compararlas.

4.1.2. Tipo de Investigación

La investigación fue de tipo aplicado porque según Carrasco (2016) se aplica teorías ya existentes para analizar la vulnerabilidad en eventos sísmicos y sus posibles implicancias en las edificaciones, denotando el estado actual de las edificaciones.

4.1.3. Alcance de la Investigación

Según Carrasco (2016) el estudio tuvo alcance transversal quiere decir que en una parte determinada del tiempo se analiza la vulnerabilidad sísmica que produce en las edificaciones, sin modificatoria alguna.

4.1.4. Diseño de la Investigación

El diseño empleado fue no experimental según Hernández y Mendoza (2018) porque para obtener los resultados no se manipularon las variables de estudio, solo se realizaron observaciones con los instrumentos empleados.

4.2. Métodos y Técnicas del Proyecto

Métodos según el procedimiento con el que se lleva a cabo la investigación. Será mediante análisis de laboratorio

Técnicas es conjunto de acciones con la que se realiza la investigación es por medio de la observación

4.3. Diseño Estadístico

4.3.1. Población

Según Carrasco (2016) es el conjunto de individuos que está en el área de estudio y que tienen características similares. La población en esta investigación estuvo determinada por 20 edificaciones de albañilería confinada del centro poblado de Sacsamarca ubicado en la Provincia de Tarma, departamento de Junín.

4.3.2. Muestra

Según Carrasco (2016) la muestra es un pequeño sub grupo de la población que muestran poseer características similares entre sí y son parte esencial del estudio, la muestra en el trabajo de investigación estuvo determinada por 20 edificaciones de albañilería confinada, esto vendría a ser la totalidad de la población estudiada.

4.4. Técnicas y Herramientas Estadísticas

4.4.1. Técnicas para la Recolección de Datos

Según Maya (2022) las técnicas son utilizadas como procesos que ayudan en la guía de generar conocimientos direccionados; así como la forma de obtener datos que sirven en el estudio; es por ello que la investigación abordó las técnicas de observación especificamente en el lugar de estudio, así como el causal comparativo, cuyo fundamento radica en que se comparó la vulnerabilidad con los métodos de Hirosawa y CENEPRED.

4.4.2. Instrumentos de Investigación

Se utilizaron los siguientes instrumentos para seguir el proceso idóneo para la recolección de datos.

Herramienta 1. Hoja de cálculo para determinar el índice de vulnerabilidad estructural y el índice de demanda sísmica de las edificaciones para el método de Hirosawa, variando cada numeración de ficha correlativamente, ubicado en el anexo 2.

Herramienta 2. Hoja de verificación de dimensiones, establecidas por el método de CENEPRED.

CAPÍTULO V. DESARROLLO DE LA INVESTIGACIÓN

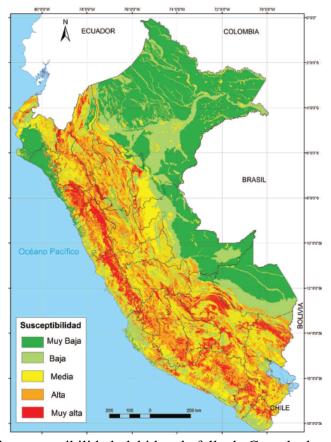
5.1. Descripción de la zona de estudio

5.1.1. Clima

Según los estudios de la Universidad Nacional Autónoma Altoandina de Tarma, y la Estación meteorológica de Tarma, la ciudad posee clima templado y árido, lo que hace poseer una amplitud térmica moderada. La temperatura varía de 19.3°C y 6.3°C, con frío por las noches y sol intenso en el día.

El clima es variado respecto a las diversas zonas altitudinales, con el desempeño de microclimas que varía la topografía, altitud y exposición. La precipitación pluvial se da en su mayor amplitud desde octubre hasta abril.

5.1.2. Suelo


Tarma se sitúa en las estribaciones de la Cordillera Oriental, atravesado por la Cordillera de los Andes, por ello el territorio es accidentado; se encuentra a 3060 msnm, situado en la región sierra; cuenta con montañas que llegan en altitud hasta 4500 msnm, teniendo constitución material de textura arcillosa.

5.1.3. Vulnerabilidad

La ciudad de Tarma, posee zonas accidentadas y con suelo de arcilla, lo que provoca deslizamientos en las alturas con pendientes altas, donde en Sacsamarca tiene esta orografía en un sector del centro poblado, asimismo posee estratos de mala calidad y las edificaciones son construidas en terreno de origen agrícola, constituyendo una susceptibilidad al daño y peligro que ocasione un sismo.

A continuación se presenta el mapa de peligrosidad de Perú, según Villacorta et al., (2012).

Figura 14Susceptibilidad por movimiento en masa en Perú

Nota. Tarma posee alta susceptibilidad, debido a la falla de Cayesh al noreste de la ciudad (Ministerio del Ambiente, 2011).

5.2. Características de las estructuras de albañilería confinada

Las edificaciones en el Centro Poblado de Sacsamarca, poseen una estructura típica, mayormente se edifican con albañilería confinada, estas edificaciones son construidas mediante la mano de obra no calificada y albañiles que en muchos casos no siguen el procedimiento del sistema constructivo; estas viviendas de tres niveles que en su totalidad se usan en familia, fueron construidas en su mayoría en los últimos 10 años.

Figura 15Vivienda de 3 niveles de Sacsamarca

Nota. Edificación de 3 niveles situada en el CP de Sacsamarca

5.3. Evaluación de vulnerabilidad sísmica con el método de Hirosawa

5.3.1. Cálculo el índice de Vulnerabilidad estructural (Is)

A continuación se presentará una evaluación detallada que se realizó para la edificación 1, de tres niveles; a partir de ello se generó el formato con la hoja de cálculo que ayudó a generar los datos.

Cálculo del índice Is

Para poder calcular en índice en mención, se aplica la fórmula siguiente:

$$I_s = E_0 * S_D * T$$

Donde:

 E_0 : Indice sísmico básico de comportamiento estructural

 S_D : Índice de configuración estructural

T: Índice de deterioro de la edificación

Cálculo de E_0

El análisis que se realizó es al primer nivel de evaluación, es así que el índice sísmico básico de comportamiento estructural se estima en cada piso por la última resistencia, en las direcciones de los pisos, con la suma de los productos de las áreas de las secciones transversales esto de un elemento como muro o columna, conjunto con su resistencia de corte al que se le resta el factor αi, por lo que se analiza en conjunto con los elementos que alcanzan su resistencia por medio de la deformación menor que el de los demás elementos como son muros de albañilería confinada.

El índice Eo es proporcional al producto del coeficiente de resistencia (C) y del de ductilidad (F), denotado en la siguiente ecuación:

$$E_0 = \alpha C * F$$

Para poder obtener el Eo, es necesario en primera instancia, clasificar en algunas de las categorías a todo elemento, por ende se muestra:

- i. Muros de albañilería armada o muros de albañilería confinada. Este tipo de estructura contiene elementos ya sean de hormigón, pilares, mientras la albañilería confinada posee elementos como es el muro portante de ladrillos.
- ii. Muros de relleno de albañilería. Vienen a ser aquellas estructuras con muros de albañilería ubicados en el fondo de los vanos, es decir de los pórticos, no poseen ningún refuerzo, no se aíslan los muros del pórtico.
- iii. Muros de hormigón armado. Referidos a elementos como su nombre refiere, de hormigón armado, del cual su sección transversal viene teniendo la relación mayor de 3 entre el lado mayor y menor.
- iv. Columnas de hormigón armado. Este tipo de estructura esta definida específicamente por la relación de ho/D (ho es la altura libre y D es el ancho transversal) que debe ser mayor que

v. Columnas cortas de hormigón armado. Para poder entrar en esta categoría, todas las columnas deben tener una relación de ho/D menor o igual a 2; estas columnas se vienen controlando a partir de presentar corte frágil y tienen poco nivel de deformación inelástica y se alcanza resistencia; para que se pueda establecer la altura libre es necesario considerar la presencia de elementos que reducen la altura de la columna sin aislamiento de por medio.

Para el caso de la investigación, el elemento o subestructura vertical que forma parte de la estructura sismorresistente pertenece a la categoría de muros de albañilería confinada.

Para determinar la resistencia y poder analizar y calcular la menor capacidad de deformación inelástica, así como la forma y capacidad de disipar la energías del sismo, tales estructuras como edificaciones con columnas cortas, albañilería y demás que ayuden a determinar los comportamientos sísmicos.

El índice Eo posee la siguiente ecuación para ser determinado:

$$E_p = \frac{(n_p + 1)}{(n_p + i)} * \{\alpha_1 * (C_{mar} + C_{sc} + C_a + C_{ma}) + \alpha_2 * C_w + \alpha_3 * C_c\} * F$$

Donde:

αi: Se refiere al factor de reducción que es alcanzada a partir del nivel de deformación en función del control de elementos frente al comportamiento de un sísmico. Para denotar los factores, tenemos que observar la tabla 18, lo que hace denotar que los elementos dúctiles son de Tipo C, los menos frágiles son de Tipo B y los más frágiles vienen dado por el Tipo A.

np: Denota la cantidad de pisos del edificio.

i: Se refiere al nivel que estaremos evaluando.

Cmar: En este ítem va referido a la resistencia de los muros de relleno de albañilería.

Csc: En este ítem va referido a la resistencia de las columnas cortas en edificaciones de concreto armado.

Ca: Se viene a denotar la resistencia de los muros en edificaciones de albañilería no reforzada.

Cw: Índice de resistencia proporcionada por los muros de concreto armado.

Cc: Refleja la resistencia de columnas no cortas.

F: Refleja la ductilidad en forma de índice, referente a elementos verticales.

$$F = 1.0$$
 si Cmar, Ca y Csc son = a cero

$$F = 0.8$$
 si Cmar, Ca y Csc son \neq de cero

Para edificaciones de albañilería confinada, donde se controla por tener el mayor porcentaje en la edificación, el índice de F será igual a 0.8 que tiene una capacidad, debido a los elementos de confinamiento, enfocada a la deformación inelástica.

La capacidad frente al sismo se considera primero para elementos frágiles, y sucesivamente si no produce inestabilidad.

Tabla 20Valores de los coeficientes α₁

Tipo	α1	α2	α3	Modo de falla
A	1.0	0.7	0.5	Muros de rellenos de albañilería p columnas
				cortas o muros de albañilería no reforzada y
				parcialmente confinada o muros de
				albañilería confinada controlan la falla.
В	0.0	1.0	0.7	Muros de hormigón armado controlan la
				falla.
C	0.0	0.0	1.0	Columnas de hormigón armado controlan la
				falla

Nota. Adaptado de la Norma Técnica E.070, (2020). Para el caso se consideró el tipo A.

En la ecuación anteríormente mostrada podemos denotar lo siguiente:

$$E_{p} = \frac{(n_{p}+1)}{(n_{p}+i)} * \{ \alpha_{1} * (C_{mar} + C_{sc} + C_{a} + C_{ma}) + \alpha_{2} * C_{w} + \alpha_{3} * C_{c} \} * F$$

* La resistencia de los sistemas estructurales con más nivel de deformación se modifica, tal que, sea compatible con el mismo nivel de deformación del sistema menos dúctil

Para poder determinar la relación entre el coeficiente de corte basal y el corte según el piso (n + 1)/(n + i) lo que considera también los esfuerzos de corte en función de su peso, en este caso el número de pisos totales n=3.

Peso que carga cada nivel

Para determinar el índice de resistencia denominado Ci, fue necesario determinar las caraterísticas de los muros; en este caso que fue donde se realizó la modificación en función de cuantía y modalidad de refuerzo; en caso de muros de albañilería confinada se usa la resistencia de agrietamiento diagonal que propuso Raymondi.

La ecuación usada para albañilería es:

$$C_{ma} = \frac{0.6 * (0.45 * \tau_0 + 0.25 * \sigma_0)}{\sum_{j=i}^{np} W_j} * \{\alpha_1$$

Dónde:

 $au_0 = ext{Esfuerzo}$ de corte de la albañilería confinada

 $\sigma_0 = Esfuerzo$ axial de la albañilería por piso

Valor para Esfuerzo cortante de la albañilería confinada

En relación al mortero de 1:4, denotada en la norma E.070 Albañilería

 Tabla 21

 Resistencias características de Albañilería MPa

Materia prima	Clase	Muretes (kg/cm^2)
	King Kong Artesanal	5.1
Arcilla	King Kong Industrial	8.1
	Rejilla Industrial	9.2
	King Kong Normal	9.7
Sílice - cal	Dédalo	9.7
	Estándar y mecano	9.2
		8.6
Compando	Diagnatina D	2.2
Concreto	Bloque tipo P	9.7
		10.9

Nota. Adaptado de la Norma Técnica E.070 (2020). A partir de ello se selecciona según las características, $\tau_0 = 8.1 \ kg/cm^2$ para los cálculos respectivos.

Valor para Esfuerzo axial de la albañilería confinada por piso

La carga axial que toma este, por cálculo:

Se toma el ancho tributario, en este caso es de: 3.88m.

El peso por piso por m^2 de albañilería según la norma E.070 es de $800 \ kgf/m^2$

Si tengo
$$(800 kgf/m^2)/1000 = 0.8 tn/m^2$$

$$(0.8 tn/m^2 * 3.88m) / (espesor de muro aplicado - soga)$$

$$(0.8 tn/m^2 * 3.88m) / (0.13) = 23.87 tn/m^2$$

$$(23.87 tn/m^2/10) = 2.3 kgf/cm^3$$

Este valor de $2.3 \, kgf/cm^3 \cong 2 \, kgf/cm^3$ es en un piso, por ende, los valores que se usarán en la evaluación en cada piso son determinados por:

Si está cargando 3 pisos:
$$(2 kgf/cm^3) * 3 = 6 kgf/cm^3$$

Si está cargando 2 pisos:
$$(2 kgf/cm^3) * 2 = 4 kgf/cm^3$$

Si está cargando 1 piso:
$$(2 kgf/cm^3) * 1 = 2 kgf/cm^3$$

A partir de ello se realizan los análisis por niveles.

Análisis del primer nivel

Tabla 22Datos para el análisis de la edificación $N^{\circ}01$ – primer nivel

Método de Hirosawa modificado					
n	3	Número de pisos			
Peso/m²	800 kgf/m^2	Peso por piso por m ²			
Área del Piso	120 m ²	Área del Piso Esfuerzo de corte de la			
t_0	8.1 kgf/cm ²	Albañilería Esfuerzo Axial en albañilería por			
S ₀	6 kgf/cm ²	piso Resistencia a la compresión del			
f'c	210 kgf/cm ²	concreto			

Nota. Elaboración propia.

Tabla 23 Modo de falla para la edificación $N^{\circ}01$ de albañilería confinada — primer nivel

Nivel 1	t cm	L cm	Número de veces	A cm	Tipo de Elemento
Muro 1	13	400	6	31200	Albañilería Confinada
Muro 2	13	250	4	10400	Albañilería Confinada
Muro 3	13	150	8	15600	Albañilería Confinada
Muro 4	13	125	4	6240	Albañilería Confinada

Tabla 24 Modo de falla para la edificación $N^\circ 01$ de albañilería confinada — primer nivel

C _{ma} Albañilería Confinada	α1	α2	α3	F	Ep
96314.4	1.000	0.700	0.500	0.800	0.268
32104.8	1.000	0.700	0.500	0.800	0.089
48157.2	1.000	0.700	0.500	0.800	0.134
19262.9	1.000	0.700	0.500	0.800	0.054

Nota. Elaboración propia. α es el coeficiente de resistencia, F el coeficiente de ductilidad y Ep

el índice sísmico basado en el comportamiento estructural.

Análisis del segundo nivel

Tabla 25Datos para el análisis de la edificación $N^{\circ}01$ – segundo nivel

	Método de Hiros	sawa modificado
n	3	Número de pisos
Peso/m²	800 kgf/m^2	Peso por piso por m ²
Área del Piso	120 m ²	Área del Piso
		Esfuerzo de corte de la
t_0	8.1 kgf/cm ²	Albañilería
		Esfuerzo Axial en albañilería por
s_0	4 kgf/cm ²	piso
		Resistencia a la compresión del
f'c	175 kgf/cm ²	concreto

Nota. Elaboración propia.

Tabla 26 *Modo de falla para la edificación N°01 de albañilería confinada – segundo nivel*

Nivel 1	t cm	L cm	Número de veces	A cm	Tipo de Elemento
Muro 1	13	400	6	31200	Albañilería Confinada
Muro 2	13	200	4	10400	Albañilería Confinada
Muro 3	13	150	6	11700	Albañilería Confinada
Muro 4	13	120	4	6240	Albañilería Confinada

Tabla 27 Modo de falla para la edificación $N^\circ 01$ de albañilería confinada — segundo nivel

C _{ma} Albañilería Confinada	α1	α2	α3	F	Ep
86954.4	1.000	0.700	0.500	0.800	0.290
28984.8	1.000	0.700	0.500	0.800	0.097
32607.9	1.000	0.700	0.500	0.800	0.109
17390.9	1.000	0.700	0.500	0.800	0.058

Nota. Elaboración nota. α es el coeficiente de resistencia, F el coeficiente de ductibilidad y Ep el índice sísmico basado en el comportamiento estructural.

Análisis del tercer nivel

Tabla 28Datos para el análisis de la edificación N°01 – tercer nivel

Método de Hirosawa modificado						
n	3	Número de pisos				
Peso/m²	800 kgf/m^2	Peso por piso por m ²				
Área del Piso	120 m ²	Área del Piso Esfuerzo de corte de la				
t_0	8.1 kgf/cm ²	Albañilería Esfuerzo Axial en albañilería por				
S ₀	2 kgf/cm ²	piso				
f'c	175 kgf/cm ²	Resistencia a la compresión del concreto				

Nota. Elaboración propia.

Tabla 29 *Modo de falla para la edificación N°01 de albañilería confinada – tercer nivel*

Nivel 1	t cm	L cm	Número de veces	A cm	Tipo de Elemento
Muro 1	13	400	6	31200	Albañilería Confinada
Muro 2	13	200	4	10400	Albañilería Confinada
Muro 3	13	150	2	3900	Albañilería Confinada
Muro 4	13	120	2	3120	Albañilería Confinada

Tabla 30 *Modo de falla para la edificación N°01 de albañilería confinada – tercer nivel*

C _{ma} Albañilería Confinada	α1	α2	α3	F	Ep
77594.4	1.000	0.700	0.500	0.800	0.431
25864.8	1.000	0.700	0.500	0.800	0.144
9699.3	1.000	0.700	0.500	0.800	0.054
7759.4	1.000	0.700	0.500	0.800	0.043

Nota. Elaboración propia. α es el coeficiente de resistencia, F el coeficiente de ductibilidad y Ep el índice sísmico basado en el comportamiento estructural.

En consecuencia se establece los datos para el Índice Sísmico

Tabla 31Data complementaria para realizar el cálculo del Índice Sísmico

Datos o	Datos complementarios para el Índice Sísmico				
S_{D}	0.9	Índice de Configuración Estructural			
T	1	Índice de deterioro de la Edificación			

Nota. Datos establecidos para la comparativa de índices

 S_D : Indice de configuración estructural

El método de Hirosawa, propone calcular SD en el primer nivel de evaluación, y se halla utilizado la siguiente ecuación:

$$S_D = \prod_{i=1}^{1=8} q_i$$

Donde:

$$qi = \{1,0 - (1 - Gi) * Ri \} para i = 1,2,3,4,5,7 y 8$$

 $qi = \{1,2 - (1 - Gi) * Ri \} para i = 6$

Para poder completar los valores de Gi y Ri se denotan en la tabla 30, presentada a continuación:

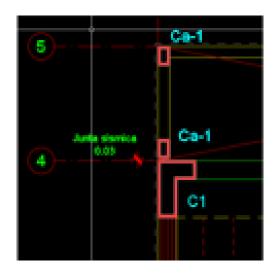
Tabla 32Datos complementarios en función de valores de Gi y Ri

ítems		Gi				
	1.0	0.9	0.8	_		
Regularidad	Regular	Mediano	Irregular	1.0		
Relación largo - ancho	B < 5	5 < B < 8	B >8	0.5		
Contrastación de planta	0.8 < c	0.5 < c < 0.8	c<0.5	0.5		
Atrío o patio interior	R=0.1	0.1 < R < 0.3	0.3 <r< td=""><td>0.5</td></r<>	0.5		
Excentricidad	f1=0.4	f1=0.4	0.4 < f1	0.25		
de atrío o patio interior	f2=0.1	0.1< f2<0.3	o.3 <f2< td=""><td></td></f2<>			
Subterráneo	1.0=R	0.5 < R < 1.0	R<0.5	1.0		
Junta de dilatación	0.01 <s< td=""><td>0.005<s<0.01< td=""><td>s<0.005</td><td>0.5</td></s<0.01<></td></s<>	0.005 <s<0.01< td=""><td>s<0.005</td><td>0.5</td></s<0.01<>	s<0.005	0.5		
Uniformidad de altura de piso	0.8 <r< td=""><td>0.7<r<0.8< td=""><td>R<0.7</td><td>0.5</td></r<0.8<></td></r<>	0.7 <r<0.8< td=""><td>R<0.7</td><td>0.5</td></r<0.8<>	R<0.7	0.5		

Nota. Norma Técnica E.030, 2018.

Para la investigación cumple lo siguiente:

2. Relación largo – ancho: Es la relación que se muestra a partir de las dimensiones mayores y menores en planta, cuyos tipos son U,T ó L.


La edificación es de 7.45m de ancho y 13.45m de largo

Calculando B =
$$13.45 \text{ m} / 7.45 \text{ m} = 1.69 < 5$$
, Gi=1 y Ri=0.5

Junta de dilatación: Es conocida como S, es aplicable a edificaciones con junta de dilatación, dividiendo la junta y la altura del nivel a partir del suelo

Por ejemplo se puede tener: H (altura de la edificación) = 9 m = 900 cm

Figura 16 *Junta de dilatación de plano de edificación*

Nota. En el plano de ejemplo se muestra Junta= 3 cm

Para el método que estamos analizando, es necesario usar SD de entre los valores poco favorables en los diferentes tipos, y este será representativo para toda la edificación en su conjunto, reemplazando en la fórmula:

$$qi = \{1,0 - (1 - 0.8) * 0.5\} para i = 7$$

 $qi = SD = 0.9$

T: Índice de deterioro de la edificación

El índice de deterioro de la edificación, se puede establecer a partir de cuantificar los aspectos de deterioro en el período de vida que posee la vivienda, así como también los daños de sismos pasados u otras acciones que pudieran afectar; eso se realiza in situ, observando la edificación y con data obtenida del propietario.

Para poder cuantificar se presenta la tabla 33 con los valores de T, debe ser el menor obtenido.

Tabla 33 *Valores del índice de deterioro*

Deformación permanente (T1)
Característica	T1
El edificio presenta inclinación debido a	0.7
asentamiento diferencial.	
El edificio está construido sobre relleno	0.9
artificial	0.0
El edificio ha sido reparado debido a	0.9
deformaciones presentadas anteriormente Tiene visible deformación de vigas o	0.9
columnas	0.9
No presenta signos de deformación	1.0
Grietas en muros o columnas debido a corrosión o	del acero de refuerzo (T2)
Características	T2
Presenta filtraciones con corrosión visible	0.8
de armaduras	
Presenta grietas inclinadas visibles en columnas	0.9
Presenta grietas visibles en muros	0.9
Presenta filtraciones, pero	0.9
Nada de lo anterior	1.0
Incendios T3	
Característica	T3
Ha experimentado incendios, pero no fue reparado	0.7
Ha experimentado incendio y fue	0.8
adecuadamente reparado	1.0
No ha experimentado incendio	1.0
Uso del cuerpo o bloque (T	
Característica	T4
Almacena sustancias químicas	0.8
No contiene sustancias químicas	1.0
Tipo de daño estructural (*
Característica	T5
Presenta daño estructural grave	0.8
Presenta daño estructural fuerte	0.9
Presenta daño estructural ligero o no estructural	1.0

Nota. En esta investigación, el índice de deterioro tendrá el valor de 1, ya que no presenta signos de deformación. Norma Técnica E.030, 2018.

Es necesario denotar la clasificación de daño, el cuál se presenta el la Tabla 34.

Tabla 34 *Tipos de daño a causa de sismo*

Descripción
Los daños se manifiestan sólo en elementos no estructurales
Se presentan con grietas de menos de 0.5 mm de espesor en
elementos de hormigón armado, asimismo, grietas menores de 3 mm en muros de albañilería
Grietas de 0.5 a 1 mm en elementos de hormigón armado y de 3 a 10 mm en muros de albañilería.
Se manifiestan en grietas mayores de 1 mm en hormigón armado, aparecen aberturas en albañilería, así también: aplastamiento de muros, columnas vigas, rotura de estribos, desplome de columnas, asentamientos mayores de 20 cm; y por último desplome de la edificación en más de 1% de su altura.

Nota. Iglesias et al. (1987) citado en Pan American Health in Publication Data, 2000.

5.3.2. Determinar el índice de la demanda sísmica - método de Hirosawa

Tabla 35Datos para el índice de demanda Sísmica

Datos para la investigación			
E_{S0}	0.8	1er Nivel de Inspección	
\mathbf{Z}	0.5	Zonificación Sísmica (0.5 <z<1.0)< td=""></z<1.0)<>	
		Amplificación por condición de sitio (S para la	
G	1	E.030)	
U	1	Uso de la Edificación (U para la E.30)	

Nota. Elaboración propia.

El índice de demanda sísmica se denota por la siguiente ecuación:

$$I_{so} = E_{so} * Z * G * U$$

donde:

Eso = Resistencia sísmica básica requerida, es el índice de demanda básica de la estructura para el primer nivel de inspección es de $E_{so} = 0.8$,

Z = Es denominado como factor de zona sísmica, y tiene valores de entre 0,5 a 1 en cuestión de cálculos, en este caso es en la localidad de Tarma el cuál se encuentra en la zona
 3.

Tabla 36Datos de factor de zona

Zona	Z
4	0.45
3	0.35
2	0.25
1	0.10

Nota. Por ende según la Tabla, el factor correspondería 0.35; siendo el mínimo 0.50 es el que se considera para el análisis. Norma Técnica E.030, 2018.

G = Es el índice de influencia en función a las condiciones topográficas y geotécnicas.

En la norma E.030, el factor de suelo es denominado como Tp(S), por lo cuál para la presente investigación se denota el Tp(S2) = 1.2, suelos intermedios.

U =Factor de importancia del edificio según el uso que se le da, también conocido como índice de uso.

En la norma E.030, se puede observar las calificaciones de las edificaciones, como por ejemplo una edificación común cuyo factor U= 1.0 (varía según el tipo de uso).

5.3.3. Comparación el índice de vulnerabilidad estructural y el índice de la demanda sísmica

A partir de ello se pueden denotar resultados finales de vulnerabilidad con el método de Hirosawa modificado, por nivel:

Tabla 37 *Vulnerabilidades por niveles de edificación*

	Capacidad		Demanda	Status
	$\mathbf{E_0}$	Is	Iso	Status
3er Nivel	0.672	0.605	0.48	No vulnerable
2do Nivel	0.524	0.472	0.48	No vulnerable
1er Nivel	0.450	0.405	0.48	No vulnerable
	Estado de edificación		No vulnerable	

Para decir que una edificación es No vulnerable se debe comparar el Is con el Iso; si el Is es menor que el Iso, entonces se menciona que es No Vulnerable; analizando por niveles, basta que solo un nivel sea vulnerable, para considerarlo a nivel de edificación.

Se concluye que el primer nivel de la edificación posee Is de 0.405, es decir que soporta una capacidad al sismo, frente a la demanda de 0.48 como Iso; por lo que es No Vulnerable; para el segundo y tercer nivel también se constituyen No vulnerables, en síntesis, la edificación 01 en el CP de Sacsamarca es No Vulnerable.

5.3.4. Resultados de vulnerabilidad de las 20 viviendas

A partir de ello podemos denotar en la siguiente tabla los resultados de las 20 edificaciones evaluadas en el Centro Poblado de Sacsamarca.

OE1: Determinar los índices y nivel vulnerabilidad sísmica de edificaciones del centro poblado de Sacsamarca basado en el método de Hirosawa.

Los resultados obtenidos mediante el método de Hirosawa para una edificación se hallaron mediante una comparación entre el índice de juicio estructural (Iso) y el índice de vulnerabilidad (Is),

Tabla 38 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}01$

Piso	Is	Iso	Estado
3	0.605	0.48	No vulnerable
2	0.472	0.48	Vulnerable
1	0.405	0.48	Vulnerable

Nota. Elaboración propia. La edificación E1 se aprecia que el Is es mayor al Iso es por ello decimos que la edificación 1 no es segura, es decir, tiene un comportamiento incierto frente a un movimiento sísmico, ello se debe a que la edificación solo posee muros laterales y una separación de un cuarto.

Tabla 39 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}02$

Piso	Is	Iso	Estado
3	0.711	0.48	No vulnerable
2	0.504	0.48	No vulnerable
1	0.449	0.48	Vulnerable

Nota. Elaboración propia. La edificación 2 se aprecia que el primer nivel es vulnerable con Is de 0.449 que es menor de 0.48 de Iso; el segundo y tercer nivel no son vulnerables; por ende, la edificación se considera vulnerable.

Tabla 40 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}03$

Piso	Is	Iso	Estado
3	0.839	0.48	No vulnerable
2	0.539	0.48	No vulnerable
1	0.401	0.48	vulnerable

Nota. Elaboración propia. La edificación 3 posee dos niveles no vulnerables; mientras que el primer nivel es vulnerable, teniendo un índice de esfuerzo de 0.401; mientras que la necesidad es de 0.48; es por ello que la edificación se considera vulnerable.

Tabla 41Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°04

Piso	Is	Iso	Estado
3	0.839	0.48	No vulnerable
2	0.539	0.48	No vulnerable
1	0.401	0.48	vulnerable

Nota. Elaboración propia. En la edificación 4 se aprecia que el primer nivel es vulnerable por tener Is de 401 menor al requerido de Iso de 0.48; es por ello, que, aunque los niveles superiores son no vulnerables, la edificación en su conjunto es catalogada como vulnerable.

Tabla 42Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°05

Piso	Is	Iso	Estado
3	1.324	0.48	No vulnerable
2	0.890	0.48	No vulnerable
1	0.707	0.48	No vulnerable

Nota. Elaboración propia.

La edificación 5 muestra que en sus tres niveles son no vulnerables al no sobrepasar el índice necesario, es decir no es susceptible ante un sismo.

Tabla 43Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°06

Piso	Is	Iso	Estado
3	0.610	0.48	No vulnerable
2	0.619	0.48	No vulnerable
1	0.522	0.48	No vulnerable

Nota. Elaboración propia.

En la edificación 6 se puede sentir segura sus habitantes, debido a que la estructura no es vulnerable ante eventos sísmicos, analizado con este método.

Tabla 44 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}07$

Piso	Is	Iso	Estado
3	1.801	0.48	No vulnerable
2	1.360	0.48	No vulnerable
1	1.256	0.48	No vulnerable

La edificación 7 presenta que el Is es menor al Iso es por ello decimos que no es insegura, ni vulnerable.

Tabla 45 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}08$

Piso	Is	Iso	Estado
3	2.439	0.48	No vulnerable
2	1.677	0.48	No vulnerable
1	1.445	0.48	No vulnerable

Nota. Elaboración propia.

Podemos observar que en la edificación 8, todos los Is con mayores que el Iso necesario, es por ello que la edificación se presenta como no vulnerable.

Tabla 46 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}09$

Piso	Is	Iso	Estado
3	1.374	0.48	No vulnerable
2	0.924	0.48	No vulnerable
_ 1	0.840	0.48	No vulnerable

Nota. Elaboración propia.

El análisis que se le brinda a la edificación 9 refleja que al ser menor el Iso que el Is en todos sus niveles, entonces la edificación no es vulnerable.

Tabla 47 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}10$

Piso	Is	Iso	Estado
3	1.035	0.48	No vulnerable
2	0.696	0.48	No vulnerable
_1	0.615	0.48	No vulnerable

La edificación 10 presenta no vulnerabilidad al poseer índices mayores de Iso, que el analizado para soportar de Iso.

Tabla 48 $Resultados\ de\ vulnerabilidad\ con\ el\ m\'etodo\ de\ Hirosawa\ de\ la\ edificaci\'on\ N^\circ 11$

Piso	Is	Iso	Estado
3	1.499	0.48	No vulnerable
2	1.008	0.48	No vulnerable
1	0.947	0.48	No vulnerable

Nota. Elaboración propia.

En la edificación 11 se puede denotar que posee no vulnerabilidad, al presentar mayores índices de esfuerzo al requerido como necesario para este tipo.

Tabla 49 $Resultados\ de\ vulnerabilidad\ con\ el\ m\'etodo\ de\ Hirosawa\ de\ la\ edificaci\'on\ N^\circ 12$

Piso	Is	Iso	Estado
3	0.493	0.48	No vulnerable
2	0.580	0.48	No vulnerable
1	0.459	0.48	vulnerable

Nota. Elaboración propia.

En la edificación 12 podemos observar que el primer nivel posee vulnerabilidad, mientras que el segundo y tercero no vulnerable, por ende, la edificación en su conjunto, es vulnerable.

Tabla 50Resultados de vulnerabilidad con el método de Hirosawa de la edificación N°13

Piso	Is	Iso	Estado
3	0.718	0.48	No vulnerable
2	0.660	0.48	No vulnerable
1	0.478	0.48	vulnerable

Nota. Elaboración propia.

El análisis de datos de la edificación refleja que de los tres niveles que posee la edificación, al menos uno de ellos es susceptible a sismos, por ende, la edificación es vulnerable.

Tabla 51 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}14$

Piso	Is	Iso	Estado
3	0.569	0.48	No vulnerable
2	0.383	0.48	vulnerable
_1	0.417	0.48	vulnerable

Nota. Elaboración propia.

En la edificación 14 se aprecia que el primer y segundo nivel son vulnerables, mientras que el tercero no; en ende la edificación en conjunto es vulnerable.

Tabla 52 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}15$

Piso	Is	Iso	Estado
3	0.760	0.48	No vulnerable
2	0.511	0.48	No vulnerable
_1	0.456	0.48	vulnerable

En la edificación 15 podemos apreciar que el primer piso es susceptible a sismos, por ende, afecta a toda la estructura, haciendo que sea vulnerable.

Tabla 53 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}16$

Piso	Is	Iso	Estado
3	0.640	0.48	No vulnerable
2	0.417	0.48	vulnerable
1	0.451	0.48	vulnerable

Nota. Elaboración propia.

En la tabla de la edificación 16 muestra que el primer y segundo nivel son vulnerables; por ende, esto hace a toda la estructura susceptible.

Tabla 54 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}17$

Piso	Is	Iso	Estado
3	0.582	0.48	No vulnerable
2	0.457	0.48	vulnerable
1	0.412	0.48	vulnerable

Nota. Elaboración propia.

La edificación 17 muestra que, solo el tercer nivel no es vulnerable y siendo los demás afectos; en consecuencia, la edificación es vulnerable.

Tabla 55 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}18$

Piso	Is	Iso	Estado
3	0.909	0.48	No vulnerable
2	0.611	0.48	No vulnerable
1	0.502	0.48	No vulnerable

El estado de la edificación 18 muestra que en ninguno de sus niveles existe vulnerabilidad, es decir, que no es susceptible al sismo.

Tabla 56Resultados de vulnerabilidad con el método de Hirosawa de la edificación $N^{\circ}19$

Piso	Is	Iso	Estado
3	1.018	0.48	No vulnerable
2	0.734	0.48	No vulnerable
1	0.722	0.48	No vulnerable

Nota. Elaboración propia.

La edificación 19, analizada refleja que el Is en todos sus niveles es mayor que el Iso, lo que lo hace no vulnerable.

Tabla 57 $Resultados de vulnerabilidad con el método de Hirosawa de la edificación <math>N^{\circ}20$

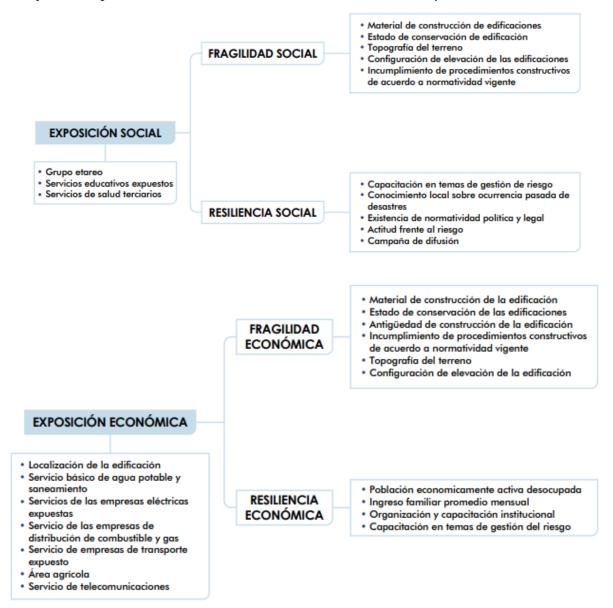
Piso	Is	Iso	Estado
3	0.762	0.48	No vulnerable
2	0.512	0.48	No vulnerable
_1	0.447	0.48	vulnerable

Nota. Elaboración propia.

En la edificación 20, se ve reflejado que en su primer nivel existe vulnerabilidad ante un sismo, siendo el segundo y tercero no vulnerables, sin embargo, el análisis de la edificación en su conjunto refleja vulnerabilidad en el sistema.

Es por ello, que a partir de los resultados presentados se denota el resumen de las 20 viviendas analizadas.

Tabla 58Resultados generales de vulnerabilidad con el método de Hirosawa


N°	Estado	Estado de Vulnerabilidad por niveles			
IN	Primer nivel	Segundo nivel	Tercer nivel	edificación	
1	No vulnerable	Vulnerable	Vulnerable	Vulnerable	
2	No vulnerable	No vulnerable	Vulnerable	Vulnerable	
3	No vulnerable	No vulnerable	Vulnerable	Vulnerable	
4	No vulnerable	No vulnerable	Vulnerable	Vulnerable	
5	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
6	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
7	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
8	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
9	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
10	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
11	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
12	No vulnerable	No vulnerable	Vulnerable	Vulnerable	
13	No vulnerable	No vulnerable	Vulnerable	Vulnerable	
14	No vulnerable	Vulnerable	Vulnerable	Vulnerable	
15	No vulnerable	No vulnerable	Vulnerable	Vulnerable	
16	No vulnerable	Vulnerable	Vulnerable	Vulnerable	
17	No vulnerable	Vulnerable	Vulnerable	Vulnerable	
18	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
19	No vulnerable	No vulnerable	No Vulnerable	No Vulnerable	
20	No vulnerable	No vulnerable	Vulnerable	Vulnerable	

La tabla mostrada refleja el resumen de vulnerabilidades y el resultado final que denota cada uno de ellos por niveles y por estructura.

5.4. Evaluación de vulnerabilidad sísmica con el método de CENEPRED

OE2: Establecer el nivel vulnerabilidad sísmica de edificaciones del centro poblado de Sacsamarca basado en el método de CENEPRED.

Figura 17Componentes que analizan las dimensiones ambiental, económica y social

Nota. Según (Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019) se genera la estimación frente a la vulnerabilidad según los parámetros social y económico.

5.4.1. Análisis de la dimensión social de vulnerabilidad - método de CENEPRED

Tabla 59Parámetros de exposición social – CENEPRED

Parámetro		Grupo etarío	Peso ponderado	o: 0.260
& 	ES1	De 0 a 5 años y mayor a 65 años	PES1	0.503
Descriptores	ES2	De 5 a 12 años y de 60 a 65 años	PES2	0.260
ipt	ES3	De 12 a 15 años y de 50 a 60 años	PES3	0.134
SCT	ES4	De 15 a 30 años	PES4	0.068
De	ES5	De 30 a 50 años	PES5	0.035
Parámetro		Servicios educativos expuestos	Peso ponderado:	0.160
	ES6	> 75% del servicio educativo	PES6	0.503
		expuesto		
	ES7	\leq 75% y > 50% del servicio	PES7	0.260
		educativo expuesto		
	ES8	\leq 50% y > 25% del servicio	PES8	0.134
S		educativo expuesto		
Descriptores	ES9	\leq 25% y > 10% del servicio	PES9	0.068
ipto		educativo expuesto		
SCL	ES10	\leq y > 10% del servicio educativo	PES10	0.035
De		expuesto		
Parámetro		Servicio de salud terciario	Peso ponderado:	0.633
	ES11	> 60% del servicio educativo	PES11	0.503
		expuesto		
	ES12	$\leq 60\%$ y > 35% del servicio	PES12	0.260
		educativo expuesto		
	ES13	\leq 35% y > 20% del servicio	PES13	0.134
S		educativo expuesto		
ore	ES14	$\leq 20\%$ y > 10% del servicio	PES14	0.068
ipta		educativo expuesto		
SCL	ES15	\leq y > 10% del servicio educativo	PES15	0.035
Descriptores		expuesto		

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres (2019)

Figura 18Resultados de exposición social - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Grupo etario Servicios	0.260	0.035	0.009
educativos expuestos	0.160	0.068	0.011
Servicio de salud terciario	0.633	0.068	0.043
	Resultado d	le exposición social:	0.063

Elaboración propia.

Tabla 60Parámetros de Fragilidad Social CENEPRED – parte 1

Parám	etro	Servicio de salud terciarío	Peso	ponderado:
			0.430	
or	FS1	Estera / cartón	PES1	0.503
Descriptor	FS2	Madera	PES2	0.260
SCI	FS3	Quincha (caña con barro)	PES3	0.134
Ď	FS4	Adobe o tapia	PES4	0.068
	FS5	Ladrillo o bloque de	PES5	0.035
es		cemento		
Paráme	etro	Estado de conservación de	Peso	ponderado:
		la edificación	0.160	
	FS6	MUY MALO: Las	PES6	0.503
		edificaciones en que las		
		estructuras presentan un deterioro		
		tal que hace presumir su colapso.		
	FS7	MUY MALO: Las	PES7	0.260
		edificaciones en que las		
		estructuras presentan un deterioro		
		tal que hace presumir su colapso.		
	FS8	REGULAR: Las	PES8	0.134
		edificaciones que reciben		
		mantenimiento esporádico, cuyas		
		estructuras no tienen deterioro y si		
		lo tienen, no lo compromete y es		
		subsanable, o que los acabados e		
		instalaciones tienen deterioros		
		visibles debido al mal uso.		
	FS9	BUENO: Las edificaciones	PES9	0.068
		reciben mantenimiento		
S		permanente y solo tienen ligeros		
ore		deterioros en los acabados debido		
ıbı		al uso normal.		
Descriptores	FS10	MUY BUENO: Las	PES10	0.035
De		edificaciones reciben		
		mantenimiento permanente y que		
		no presentan deterioro alguno.		

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 61Parámetros de Fragilidad Social CENEPRED – parte 2

Parámetro		Antigüedad de la Construcción	n	Peso ponderado	o: 0.042	
		de la Edificación				
S.	ES11	De 40 a 50 años		PES11	0.503	
ore	ES12	De 30 a 40 años		PES12	0.260	
ipt	ES13	De 20 a 30 años		PES13	0.134	
SCL	ES14	De 10 a 20 años		PES14	0.068	
Descriptores	ES15	De 5 a 10 años		PES15	0.035	
Parámetro		Configuración de elevación		Peso ponderado:	: 0.078	
S	ES16	5 pisos		PES16	0.503	
Ore	ES17	4 pisos		PES17	0.260	
Descriptores	ES18	3 pisos		PES18	0.134	
SCL	ES19	2 pisos		PES19	0.068	
De	ES20	1 piso		PES20	0.035	
Parámetro			le	Peso ponderado:	: 0.131	
		procedimientos constructivos d		1		
		acuerdo a normativa vigente				
80	ES21	80 - 100 %		PES21	0.503	
ore	ES22	60 - 80 %		PES22	0.260	
iptc	ES23	40 - 60 %		PES23	0.134	
SCTİ	ES24	20 - 40 %		PES24	0.068	
Descriptores	ES25	0 - 20 %		PES25	0.035	

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 62Resultados de fragilidad social - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Material de construcción	0.430	0.035	0.015
de la edificación	0.430	0.033	0.013
Estado de conservación	0.317	0.134	0.042
de la edificación	0.317	0.134	0.042
Antigüedad de	0.042	0.035	0.001
construcción	0.042	0.033	0.001
Configuración de	0.078	0.134	0.010
elevación	0.070	0.134	0.010
Incumplimiento de			
procedimientos	0.131	0.134	0.018
constructivos			
Resultado de fragilidad s	ocial:		0.087

Nota. Elaboración propia.

Tabla 63Parámetros de resiliencia social CENEPRED - parte 1

Parám	etro	Capacitación en temas de gestión del riesgo	Peso 0.285	ponderado:
	RS1	La totalidad de la población no cuenta ni desarrollan ningún tipo de programa de capacitación en tema concernientes a gestión de riesgo	PRS1	0.503
	RS2	La población está escasamente capacitada en temas concernientes a Gestión de Riesgos, siendo su difusión y cobertura escasa.	PRS2	0.260
	RS3	La población se capacita con regular frecuencia en temas concernientes a Gestión de Riesgos, siendo su difusión y cobertura mayoritaria.	PRS3	0.134
	RS4	La población se capacita constantemente en temas concernientes a Gestión de Riesgos, siendo su difusión y cobertura total	PRS4	0.068
Descriptores	RS5	La población se capacita constantemente en temas concernientes a Gestión de Riesgos, actualizándose participando en simulacros, siendo su difusión y cobertura total	PRS5	0.035
Paráme	tro	Conocimiento loxal sobre ocurrencia pasada de desastres	Peso 0.152	ponderado:
	FS6	Existe desconocimiento de toda la población sobre las causas y consecuencias de los desastres	PES6	0.503
	FS7	Existe un escaso conocimiento de la población sobre las causas y consecuencias de los desastres.	PRS7	0.260
S	FS8	Existe un regular conocimiento de la población sobre las causas y consecuencias de los desastres.	PRS8	0.134
Descriptores	FS9	La mayoría de población tiene conocimientos sobre las causas y consecuencias de los desastres.	PRS9	0.068
Descr	FS10	Toda la población tiene conocimiento sobre las causas y consecuencias de los desastres.	PRS10	0.035
Paráme	tro	Actitud frente al riesgo	Peso 0.152	ponderado:
	FS6	Actitud fatalista, conformista y con desidia de la mayoría de la población	PES6	0.503
	FS7	Actitud escasamente previsora de la mayoría de la población	PRS7	0.260
	FS8	Actitud parcialmente previsora de la mayoría de la población, asumiendo el riesgo, sin implementación de medidas para prevenir riesgo.	PRS8	0.134
ores	FS9	Actitud parcialmente previsora de la mayoría de la población, asumiendo el riesgo e implementando escasas medidas para prevenir riesgo	PRS9	0.068
Descriptores	FS10	Actitud previsora de toda la población, implementando diversas medidas para prevenir el riesgo		0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres 2019.

Tabla 64Parámetros de resiliencia social CENEPRED - parte 2

Parámetro		xistencia de normatividad política y	Peso ponde	erado: 0.096
R	S11 E de na es	l soporte legal que ayuda a la reducción el riesgo del territorio (local, regional o acional) en el que se encuentra el área en studio genera efectos negativos a su esarrollo	PRS11	0.503
R	S12 E	l soporte legal del territorio que ayude a la educción de riesgos del territorio (local, egional o nacional) en el que se encuentra área en estudio		0.260
R	re re el oc el de ár in	l soporte legal del territorio que ayuda a la educción del riesgo del territorio (local, egional o nacional) en el que se encuentra		0.134
Descriptores	re re el E pl co se el	l soporte legal del territorio que ayude a la educción del riesgo del territorio (local, egional o nacional) en el que se encuentra área en estudio se cumple regularmente. xiste un interés en el desarrollo lanificado del territorio. El desorden en la onfiguración territorial del área en estudio e presenta en una importante parte de todo territorio donde se encuentra		0.068
Δ	-	untualmente El soporte legal del territorio que ayude a la reducción del riesgo del territorio (local, regional o nacional) en el que se encuentra el área en estudio se llega a cumplir de manera estricta.		0.035
Parámetro	Can	-	so ponderado	: 0.046
	RS21	No hay difusión en diversos medios	PRS21	0.503
	RS22	Escasa difusión en diversos medios	PRS22	0.260
ores	RS23	Difusión masiva y poco frecuente en diversos medios	PRS23	0.134
Descriptores	RS24	Difusión masiva y frecuente en diversos medios	PRS24	0.068
Des	RS25	Difusión masiva y frecuente	PRS25	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres,

Tabla 65Resultados de resiliencia social - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Capacitación en			
temas de Gestión	0.285	0.503	0.143
del Riesgo			
Conocimiento local			
sobre ocurrencia	0.152	0.260	0.040
pasada de desastres			
Existencia de			
normatividad	0.096	0.068	0.007
política y social			
Actitud frente al	0.421	0.260	0.109
riesgo	0.121	0.200	0.107
Campaña de	0.046	0.503	0.023
difusión		0.505	
Resultado de exposic	ción social:		0.322

Se detalla a continuación el resumen y resultado de la vulnerabilidad social:

Tabla 66Resultados de vulnerabilidad en su dimensión social - CENEPRED

Resultados de la dimensión social				
Exposición social	Fragilidad social	Resiliencia social		
0.063	0.087	0.322		
Total				
0.472				

Nota. Elaboración propia.

La cuantificación de la dimensión social y se halla de la suma de la exposición, fragilidad y resiliencia, sirvió para analizar la vulnerabilidad en su conjunto.

5.4.2. Análisis de la dimensión económica de vulnerabilidad - método de CENEPRED

Tabla 67Parámetros de exposición económica CENEPRED

Parámetro	Localización de la edificación	Peso ponderado	o: 0.318
EE1	Muy cercana 0 km – 0.2 km	PEE1	0.503
e EE2	Cercana 0.2 km – 1 km	PEE2	0.260
SEE1 SEE2 EE3 EE4 EE5	Medianamente cerca 1 – 3 km	PEE3	0.134
EE4	Alejada 3 – 5 km	PEE4	0.068
Ö EE5	Muy alejada > 5 km	PEE5	0.035
Parámetro	Servicios de agua y alcantarillado	Peso ponderad	
EE6	> 75% del servicio expuesto	PEE6	0.503
≗ EE7	$> 50\%$ y $\le 75\%$ del servicio expuesto	PEE7	0.260
£ EE8	$> 25\%$ y $\le 50\%$ del servicio expuesto	PEE8	0.134
. <u>E</u> EE9	$> 10\%$ y $\le 25\%$ del servicio expuesto	PEE9	0.068
Descriptores EE9 EE10	$>$ y $\le 10\%$ del servicio expuesto	PEE10	0.035
Parámetro	Servicios de empresas eléctricas	Peso ponderad	o: 0.140
∞ EE11	> 75% del servicio expuesto	PEE11	0.503
EE11 EE12 EE13 EE14 EE15	$> 50\%$ y $\le 75\%$ del servicio expuesto	PEE12	0.260
. <u>ĕ</u> EE13	$> 25\%$ y $\le 50\%$ del servicio expuesto	PEE13	0.134
S EE14	$> 10\%$ y $\le 25\%$ del servicio expuesto	PEE14	0.068
EE15	$>$ y $\le 10\%$ del servicio expuesto	PEE15	0.035
Parámetro	Servicios de distribución de gas y combustible	Peso ponderade	o: 0.063
EE16	> 75% del servicio expuesto	PEE16	0.503
g EE17	$> 50\%$ y $\le 75\%$ del servicio expuesto	PEE17	0.260
<u>원</u> EE18	$> 25\%$ y $\le 50\%$ del servicio expuesto	PEE18	0.134
· <u>E</u> EE19	$> 10\% \text{ y} \le 25\%$ del servicio expuesto	PEE19	0.068
SE EE17 EE18 EE19 EE20	$>$ y \leq 10% del servicio expuesto	PEE20	0.035
Parámetro	Servicio de empresas de transporte	Peso ponderado: 0.089	
EE21	> 75% del servicio expuesto	PEE21	0.503
g EE22	$> 50\%$ y $\le 75\%$ del servicio expuesto	PEE22	0.260
를 EE23	$> 25\%$ y $\le 50\%$ del servicio expuesto	PEE23	0.134
EE24	$> 10\%$ y $\le 25\%$ del servicio expuesto	PEE24	0.068
EE22 EE23 EE24 EE25	$>$ y $\le 10\%$ del servicio expuesto	PEE25	0.035
Parámetro	Área agrícola	Peso ponderado	o: 0.121
EE26	> 75% del servicio expuesto	PEE26	0.503
g EE27	$> 50\%$ y $\le 75\%$ del servicio expuesto	PEE27	0.260
€ EE28	$> 25\%$ y $\le 50\%$ del servicio expuesto	PEE28	0.134
· <u>E</u> EE29	$> 10\% \text{ y} \le 25\%$ del servicio expuesto	PEE29	0.068
EE27 EE28 EE29 EE30	$y \le 10\%$ del servicio expuesto	PEE30	0.035
Parámetro	Servicios de telecomunicaciones	Peso ponderad	o: 0.050
EE31	> 75% del servicio expuesto	PEE31	0.503
EE32	$> 50\%$ y $\le 75\%$ del servicio expuesto	PEE32	0.260
. <u>달</u> EE33	$> 25\%$ y $\le 50\%$ del servicio expuesto	PEE33	0.134
EE31 EE32 EE33 EE34 EE35	$> 10\%$ y $\le 25\%$ del servicio expuesto	PEE34	0.068
<u>o</u> EE35	$>$ y \leq 10% del servicio expuesto	PEE35	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 68Resultados de exposición económica - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Localización	0.318	0.068	0.022
Servicio de agua y alcantarillado	0.219	0.134	0.029
Servicio eléctrico	0.140	0.260	0.036
Servicio de gas	0.063	0.035	0.002
Servicio de transporte	0.089	0.068	0.006
Área agrícola	0.121	0.260	0.031
Servicio de telecomunicaciones	0.050	0.035	0.002
Resultado de exposición social:			0.129

Tabla 69Parámetros de fragilidad económica CENEPRED

Parámetro		Material en telecomunicaciones	Peso ponde	rado: 0.386	
	FE1	Estera / cartón	PFE1	0.503	
ore	FE2	Madera	PFE2	0.260	
Descriptores	FE3	Quincha (caña con barro)	PFE3	0.134	
scr	FE4	Adobe o tapia	PFE4	0.068	
De	FE5	Ladrillo o bloque de cemento	PFE5	0.035	
Parámetro		Estado de conservación	Peso ponder	rado: 0.386	
Š	FE6	Muy malo.	PFE6	0.503	
ore	FE7	Malo.	PFE7	0.260	
Descriptores	FE8	Regular.	PFE8	0.134	
SCI	FE9	Bueno.	PFE9	0.068	
De	FE10	Muy bueno.	PFE10	0.035	
Parámetro		Antigüedad de construcción	Peso ponder	rado: 0.140	
Š	FE11	De 40 a 50 años	PFE11	0.503	
Descriptores	FE12	De 30 a 40 años	PFE12	0.260	
ipt	FE13	De 20 a 30 años	PFE13	0.134	
SCI	FE14	De 10 a 20 años	PFE14	0.068	
De	FE15	De 5 a 10 años	PFE15	0.035	
Parámetro		Incumplimiento de procesos	Peso ponder	rado: 0.156	
Š	FE16	80 - 100%	PFE16	0.503	
ore	FE17	60 - 800%	PFE17	0.260	
Descriptores	FE18	40 - 60%	PFE18	0.134	
SCI	FE19	20 - 40%	PFE19	0.068	
De	FE20	0 - 20%	PFE20	0.035	
Parámetro		Topografía del terreno - pendiente	Peso ponder	rado: 0.044	
Š	FE21	$50\% < P \le 80\%$	PFE21	0.503	
ore	FE22	$30\% < P \le 50\%$	PFE22	0.260	
ipt	FE23	$20\% < P \le 30\%$	PFE23	0.134	
Descriptores	FE24	$10\% < P \le 20\%$	PFE24	0.068	
De	FE25	$P \le 10\%$	PFE25	0.035	
Parámetro		Configuración de elevación	Peso ponder	Peso ponderado: 0.068	

δ.	FE26 5 pisos	PFE26	0.503
escriptores	FE27 4 pisos	PFE27	0.260
ipt	FE28 3 pisos	PFE28	0.134
scr	FE29 2 pisos	PFE29	0.068
De	FE30 1 piso	PFE30	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 70Resultados de fragilidad económica CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Material de	0.386	0.068	0.026
telecomunicaciones	0.360	0.008	0.020
Estado de conservación	0.386	0.134	0.052
Antigüedad de construcción	0.111	0.260	0.029
Incumplimiento de	0.156	0.134	0.021
procedimientos constructivos	0.130	0.134	0.021
Topografía	0.044	0.134	0.006
Configuración de elevación	0.068	0.134	0.009
Resultado de exposición socia	al:		0.143

Nota. Elaboración propia.

Tabla 71Parámetros de resiliencia económica CENEPRED

Parámetro)	Población económicamente activa	Peso ponderado	o: 0.159
		desocupada		
	RE1	Escaso acceso y la no permanencia a un	PRE1	0.503
		puesto de trabajo.		
	RE2	Bajo acceso y poca permanencia aun	PRE2	0.260
Ş		puesta de trabajo.		
Descriptores	RE3	Regular acceso y permanencia a un	PRE3	0.134
ipt		puesto.		
SCI	RE4	Acceso y permanencia a un puesto.	PRE4	0.068
De	RE5	Alto acceso y permanencia a un puesto.	PRE5	0.035
Parámetro		Ingreso familiar mensual (soles)	Peso ponderado	: 0.501
ø	RE6	> 3000	PRE6	0.503
Descriptores	RE7	> 1200 - <= 3000	PRE7	0.260
ipt	RE8	> 264 <= 1200	PRE8	0.134
SCI	RE9	> 149 - <= 264	PRE9	0.068
De	RE10	PRE10	0.035	
Parámetro		Organización y capacitación institucional	Peso ponderado	: 0.077
Desc riptor es	RE11	Poca efectividad en su gestión,	PRE11	0.503
De rip		desprestigio popular		

	RE12	Desaprobación popular	PRE12	0.260
	RE13	Nivel estándar de efectividad	PRE13	0.134
	RE14	Nivel eficiente de efectividad	PRE14	0.068
	RE15	Eficiencia alta en gestión	PRE15	0.035
Parámetro	o Capacitación en gestión de riesgos		Peso pondera	ado: 0.263
Š	RE16	Ninguna capacitación	PRE16	0.503
Descriptores	RE17	Escasamente capacitada	PRE17	0.260
ipt	RE18	Capacitación regular	PRE18	0.134
SCI	RE19	Capacitación constante	PRE19	0.068
De	RE20	Capacitación y actualización constante	PRE20	0.035

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 72Resultados de resiliencia económica - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Población			
económicamente	0.159	0.260	0.041
activa desocupada			
Ingreso familiar	0.501	0.134	0.067
promedio mensual	0.301	0.134	0.007
Capacitación en			
temas de gestión de	0.263	0.260	0.068
riesgo			
Organización y			
capacitación	0.077	0.260	0.020
institucional			
Resultado de exposic	ción social:		0.197

Nota. Elaboración propia.

Se detalla a continuación el resumen y resultado de la vulnerabilidad económica:

Tabla 73Resultados de vulnerabilidad en su dimensión económica - CENEPRED

Resultados de la dimensión económica						
Exposición económica	Fragilidad económica	Resiliencia económica				
0.129	0.143	0.197				
Total						
0.469						

Nota. Elaboración propia.

La cuantificación de la dimensión económica y se halla de la suma de la exposición, fragilidad y resiliencia, sirvió para analizar la vulnerabilidad en su conjunto.

Tabla 74Parámetros de exposición ambiental CENEPRED

Paráme		Deforestación	Peso ponderado	
	EA1	Áreas sin vegetación. Terrenos eriazos donde se	PEA1	0.503
		levanta edificaciones		
	EA2	Áreas de cultivo. Tierras dedicadas a cultivos de	PEA2	0.260
		pan llevar		
	EA3	Pastos. Tierras dedicadas al cultivo de pastos para	PEA3	0.134
		fines de alimentación		
		de animales menores y ganado.		
	EA4	Otras tierras con árboles, cubierta de dosel al 10%	PEA4	0.068
		de		
S		árboles capaces de alcanzar una altura de 5 m en la		
Descriptores		madurez.		
ipt	EA5	Bosques. Tierras que se extienden por más de 0.5	PEA5	0.035
SCI		hectáreas dotadas de árboles de una altura superior		
		a 5 m y una cubierta de dosel superior al 10 %.		
Paráme	etro	Deforestación porcentual	Peso ponderado	o: 0.077
S	EA6	75 – 100 % del total del ámbito de estudio	PEA6	0.503
ore	EA7	50 – 75 % del total del ámbito de estudio	PEA7	0.260
Descriptores	EA8	25 – 50 % del total del ámbito de estudio	PEA8	0.134
SCI	EA9	5 – 25 % del total del ámbito de estudio	PEA9	0.068
	EA10	Menor a 5 % del total del ámbito de estudio.	PEA10	0.035
Paráme	etro	Pérdida de suelo	Peso ponderado	0.263
EA11		Erosión provocada por las lluvias: pendientes	PEA11	0.503
		pronunciadas y terrenos		
		montañosos, lluvias estacionales y el fenómeno El		
		Niño.		
	EA12	Deforestación agravada, uso indiscriminado de	PEA12	0.260
		suelos, expansión		
		urbana		
	EA13	Protección inadecuada en los márgenes de	PEA13	0.134
		corrientes de agua		
SS	EA14	Longitud de la pendiente del suelo, relaciona las	PEA14	0.068
tore		pérdidas de un campo de cultivo de pendiente y		
Descriptore		longitud conocida.		
Sec	EA15	Factor cultivo y contenido en sal ocasiona pérdidas	PEA15	0.035
		por desertificación.		
Parámetro		Pérdida de agua	Peso ponderado	
	EA16	Agricultura, demanda agrícola y pérdida por	PEA16	0.503
		contaminación de aguas s		
S	EA17	Prácticas de consumo poblacional/fugas en redes	PEA17	0.260
tor		de distribución		
Descriptores	EA18	Consumo industrial y minero	PEA18	0.134
ည	EA19	Pérdidas por técnicas inadecuadas de regadío	PEA19	0.068
čĎ	EA20	Graves prácticas en conservación.	PEA20	0.035

Nota. Adaptado por Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 75Resultados de exposición económica - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Deforestación	0.501	0.260	0.130
Deforestación porcentual	0.077	0.035	0.003
Pérdida de suelo	0.263	0.134	0.035
Pérdida de agua	0.159	0.068	0.011
Resultado de exposición ambiental: 0.179			

Tabla 76Parámetros de fragilidad ambiental CENEPRED

Paráme	tro	Características geológicas del suelo	Peso ponderado	o: 0.283
	FA1	Zona muy fracturada, fallada, suelos colapsables	PFA1	0.503
		(relleno, napa freática alta turba, material		
		inorgánico, etc).		
	FA2	Zona medianamente fracturada, suelos con baja	PFA2	0.260
		capacidad portante.		
	FA3	Zona ligeramente fracturada, suelos de mediana	PFA3	0.134
es		capacidad portante.	55. 4	0.040
tor	FA4	Zonal ligeramente fracturada, suelos de alta	PFA4	0.068
rip	E 4.5	capacidad portante	DE 4.5	0.025
Descriptores	FA5	Zonas sin fallas ni fracturas, suelos con buenas	PFA5	0.035
⊃ Paráme	4	características geotécnicas	D	. 0 047
Parame		Explotación de recursos naturales	Peso ponderado	
	FA6	Prácticas negligentes e intensas de degradación en el	PFA6	0.503
	FA7	cauce y márgenes del río u otro continente de agua Prácticas negligentes periódicas o estacionales de	PFA7	0.260
	I'A'	degradación en el cauce y márgenes del río u otro	II'A'	0.200
		continente de agua		
	FA8	PFA8	0.134	
	1710	Prácticas de degradación del cauce y márgenes del río u otro continente de agua	11110	0.13
	FA9	Prácticas de consumo/uso del cauce y márgenes del	PFA9	0.068
S		río u otro continente de agua		
Descriptores	FA10	Prácticas de consumo/uso del cauce y márgenes del	PFA10	0.035
ipt		río u otro continente de agua con asesoramiento		
scr		técnico permanente bajo criterios de sostenibilidad		
De		económica y ambiental.		
Parámetro		Localización de centros poblados	Peso ponderado	
SS	FA11	Muy cercana $0 \text{ km} - 0.2 \text{ km}$	PFA11	0.503
tore		Cercana 0.2 km – 1 km	PFA12	0.260
ri pt	FA13	Medianamente cerca 1 – 3 km Alejada 3 – 5 km	PFA13	0.134
Descriptores	FA14	PFA14	0.068	
Ğ	FA15	PFA15	0.035	

Nota. Adaptado por Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 77Resultados de fragilidad ambiental - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Características	0.283	0.134	0.038
geológicas del suelo	0.203	0.134	0.030
Explotación de	0.047	0.134	0.006
recursos naturales	0.047	0.134	0.000
Localización de	0.643	0.503	0.323
centros poblados	0.043	0.303	0.323
Resultado de resilien	cia ambiental:		0.368

Tabla 78Parámetros de resiliencia ambiental CENEPRED

Parámetro		Conocimiento y cumplimiento de la normativa ambiental	Peso por 0.633	derado:
	RA1	Desconocen la existencia de normatividad	PRA1	0.503
	RA2	Sólo las autoridades conocen la existencia de normatividad. No cumplidas	PRA2	0.260
S	RA3	Las autoridades y población desconocen la existencia de normatividad. Cumplimiento parcial.	PRA3	0.134
Descriptores	RA4	Conocen la existencia de normatividad en temas de conservación ambiental. Cumpliéndola mayoritariamente	PRA4	0.068
De	RA5	Respetan y cumplen totalmente.	PRA5	0.035
Parámetro		Conocimiento ancestral para la explotación sostenible de sus recursos	Peso 0.106	ponderado:
		naturales	0.100	
	RA6	Perdieron sus conocimientos ancestrales	PRA6	0.503
Descriptores	RA7	Algunos poseen y aplican conocimientos	PRA7	0.260
ipte	RA8	Parte de la población conoce y aplica	PRA8	0.134
SCL	RA9	La población mayoritaria conoce y aplica	PRA9	0.068
De	RA10	El total de población conoce y aplica	PRA10	0.035
Parámetro		Capacitación en temas de conservación	Peso	ponderado:
		ambiental	0.260	
	RA11	Población total no recibe capacitación	PRA11	0.503
Descriptores	RA12	La población está escasamente capacitada	PRA12	0.260
	RA13	La población se capacita con regular frecuencia	PRA13	0.134
	RA14	La población se capacita constantemente	PRA14	0.068
	RA15	La población se capacita constantemente, y lo difunde	PRA15	0.035

Nota. Adaptado por Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.

Tabla 79Resultados de fragilidad ambiental - CENEPRED

Parámetro	Peso ponderado	Dato	Sub Total
Conocimiento y cumplimiento de normatividad	0.633	0.134	0.085
Conocimiento ancestral para explotación	0.106	0.134	0.014
Capacitación en temas de conservación ambiental	0.260	0.260	0.068
Resultado de resiliencia am	biental:		0.167

Tabla 80 *Resultados de vulnerabilidad en su dimensión ambiental - CENEPRED*

Resultados de la dimensión ambiental				
Exposición ambiental	Fragilidad ambiental	Resiliencia ambiental		
0.179	0.368	0.167		
Total				
0.714				

Nota. Elaboración propia

A partir de remarcar los aspectos que encajan con la situación actual de las edificaciones de albañilería confinada del centro Poblado de Sacsamarca, se procede a realizar los cálculos correspondientes.

Tabla 81Resultados de vulnerabilidad general CP - método de CENEPRED

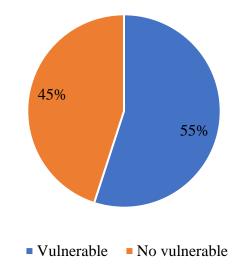
Dimensión	Peso ponderado	Cálculo de R	Nivel de vulnerabilidad
Social	0.472		
Económica	0.469	0.158	Vulnerabilidad alta
Ambiental	0.714		

Nota. El cálculo de la razón R, se obtiene multiplicando los resultados de las tres dimensiones, las edificaciones del sector de Sacsamarca presentan vulnerabilidad alta. La denotación del nivel de vulnerabilidad basado en el método de CENEPRED se presenta mediante la siguiente figura:

Tabla 82Descripción de vulnerabilidad alta brindada por CENEPRED

Nivel	Descripción	Rango		
	Grupo etario: de 5 a 12 años y de 60 a 65 años. Servicios educativos			
	expuestos: menor o igual a 75% y mayor a 50% del servicio educativo			
	expuesto. Servicios de salud terciarios expuestos: menor o igual a 60%			
	y mayor a 35% del servicio de salud expuesto. Materia de construcción:			
	madera. Estado de conservación de la edificación: Malo. Topografía del terreno: 30% ≤P≤50%. Configuración de elevación de la edificación: 4. Actitud frente al riesgo: escasamente provisoria de la mayoría de la población. Localización de la edificación: cercana 0.20 a 1km. Servicios de agua y desagüe: menor o igual 75% y mayor a 50% del servicio expuesto. Servicios de agua y desagüe: mayor a 75% del servicio			
alta				
			expuesto. Servicio de empresas eléctricas expuestas: menor a 75% y	
	mayor a 50%. Servicio de empresas de distribución de combustible y			
	gas: menor o igual 75% y mayor a 50%. Servicio de empresas de transporte expuesto: menor o igual 75% y mayor a 50%. Servicios de			
			telecomunicación: menor o igual 75% y mayor a 50%. Área agrícola:	
	menor o igual 75% y mayor a 50%.			

Nota. Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, 2019.


En la tabla se muestra que la evaluación dio como resultado el valor de 0.158, que se encuentra en el intervalo mostrado, haciendo que ello se refleja en que la vulnerabilidad del centro poblado de Sacsamarca es alta.

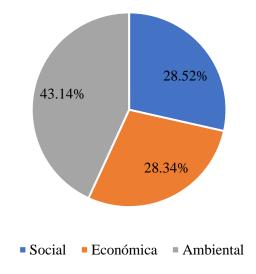
5.5. Presentación, análisis e interpretación de datos

5.5.1. Análisis estadístico

Figura 19

Porcentaje de edificaciones con vulnerabilidad - método de Hirosawa modificado.

En la figura 19 se puede apreciar que, mediante el método de Hirosawa, el 55% de edificaciones de albañilería del centro poblado de Sacsamarca es susceptible a sismos; es decir son vulnerables.


Tabla 83Estadígrafos de vulnerabilidad general CP - método de CENEPRED

Mediana	1 (vulnerable)
Moda	1 (vulnerable)
Desviación estándar	0.510
Varianza	0.261

Nota. La moda es el dato que con más frecuencia se repite, en este caso vulnerable; así como la mediana, tiene desviación estándar de 0.510, alineado a la mediana.

Figura 20

Porcentaje incidencia de dimensiones de vulnerabilidad - método de CENEPRED.

En la figura 20 se visualiza que la mayor incidencia es de la dimensión ambiental con un 43.14%, seguido de la dimensión social con 28.52% y por último incide la dimensión económica con 28.34%, estos últimos muy cercanos.

Tabla 84Estadígrafos de vulnerabilidad general CP - método de CENEPRED

Niveles de vulnerabilidad	Rang	gos	Escala	Range porce		Vulnerabilidad obtenida	Porcentaje equivalente
Vulnerabilidad							
muy alta	0.26	a 0.5	0.243	52%	100%		
Vulnerabilidad							-1
alta	0.13	a 0.26	0.126	27%	52%	0.158	31%
Vulnerabilidad							
media	0.07	a 0.13	0.066	14%	27%		
Vulnerabilidad							
baja	0.04	a 0.07	0.033	7%	14%		

Nota. Elaboración propia.

En la tabla 71 se puede observar que, la vulnerabilidad obtenida por el método de CENEPRED en este estudio fue de 0.158, que equivale a 31%.

5.5.2. Comparativa de vulnerabilidad por el método de Hirosawa y CENEPRED

Por ende, se puede concluir que en la figura 34 se muestra el análisis de vulnerabilidad basado en el método de Hirosawa, donde la vulnerabilidad de edificaciones es 55%, mientras que en la tabla 71 se observa que existe un 31% de vulnerabilidad obtenida a partir de análisis descriptivo, por ende, se cumple la Hipótesis principal que "La evaluación comparativa de vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED, de edificaciones del centro poblado de Sacsamarca, Tarma; muestran que más del 30% son vulnerables, con ambos métodos"; sin embargo, podemos resaltar que existe diferencia significativa entre ambos valores.

5.5.3. Posible solución para estructuras que tengan alto índice de vulnerabilidad

Método de refuerzo con malla FRCM (Fabric Reinforced Cementitious Matrix) en muros y columnas en albañilería confinada


Según D'Ambra et al. (2021) junto con Grande y Milani (2021) concuerdan que el método más eficiente para reforzamiento de albañilería confinada es el reforzamiento con sistema FRCM, por ende a continuación se detalla el método.

El sistema FRCM se compone de matriz cementicia más malla de refuerzo estructural.

Aplicación del Sistema FRCM.

- Refuerzos a flexión

Figura 21Aplicación de refuerzo a flexión con sistema FRCM.

Nota. Tomado de D'Ambra et al. 2021.

- Refuerzos a cortante

Figura 22Aplicación de refuerzo a cortante con sistema FRCM.

Nota. Tomado de D'Ambra et al. 2021.

- Confinamiento

Figura 23

Aplicación de refuerzo en confinamiento con sistema FRCM.

Nota. Tomado de D'Ambra et al. 2021.

El proceso para denotar el sistema de instalación del sistema FRCM es el siguiente, cual se detalla según Grande & Milani (2021)

- Se comienza con la preparación de la superficie, donde se debe eliminar impurezas y polvo que dificulten su adherencia; reconstruir defectos muy grandes con mortero y humedecer la superficie.
- Luego de ello se debe aplicar la primera capa de mortero, ello a partir de verter 90 porciento de agua, agregar el polvo, se debe mezclar hasta 3 minutos, agregar agua

y mezclar por dos minutos; se debe dejar reposar de 2 a 3 minutos, mezclar y aplicar un espesor de 3mm.

- Colocar la malla de refuerzo estructural, esto se realiza al aplicar el mortero y esperar de 1 a 2 minutos, colocar la malla y estirar, así como alinear.
- Finalmente, aplicar una segunda capa de mortero, de 3mm hasta que la malla quede totalmente cubierta.

Las ventajas de los sistemas FRCM son:

- Alta resistencia respecto al peso
- Mínimo cambio que sufre la geometría, porque la capa es delgada.
- Se puede aplicar en superficies verticales, y es resistente a la corrosión.
- Es de fácil y rápida aplicación que puede ser aplicable a las edificaciones de Sacsamarca que presentan vulnerabilidad.
- Se puede aplicar en soportes húmedos.
- Tiene resistencia a altas temperaturas cuya fibra de PBO se descompone al alcanzar
 650°C.
- No es tóxico y es de fácil limpieza.

Este método puede resultar eficiente para reducir la vulnerabilidad ante sismos de la muestra estudiada en el centro poblado de Sacsamarca.

CAPÍTULO VI. CONCLUSIONES Y RECOMENDACIONES

6.1. Conclusiones

Se tuvo como objetivo principal realizar la evaluación comparativa basado en ambos métodos; por lo cual se efectuó dicha evaluación para ambos métodos mencionados en la investigación. El lugar de estudio fue el centro poblado de Sacsamarca, Tarma; donde dio como resultado que más del 30% de edificaciones efectivamente son vulnerables. Se analizó mediante el método de Hirosawa modificado para edificaciones de albañilería, arraigados de los parámetros según el Reglamento Nacional de Edificaciones, con su normativa E.030 "Diseño sismorresistente" y E.070 "Albañilería"; con ello se determinó que el 55% de las edificaciones son vulnerables con 11 estructuras y 9 no vulnerables; mientras que, usando el método de evaluación nacional se pudo observar que el 31% muestra vulnerabilidad; concluyendo que se cumple la hipótesis general de que más del 30% tiene incidencia de vulnerabilidad; en el segundo método con solo 1% de diferencia.

El primero objetivo secundario fue determinar los índices y el nivel de vulnerabilidad con sísmica de las edificaciones del centro poblado de Sacsamarca basado en el método de Hirosawa. La investigación muestra que se determinó dichos parámetros por cada edificación, por lo que se calculó el Is que es el índice de vulnerabilidad estructural y el Iso que manifiesta el juicio estructural, es decir que determinaban el esfuerzo y la demanda respectivamente. Con ello, al ser comparados dichos índices se obtuvo como resultado que de las 20 edificaciones evaluadas 11 de ella son vulnerables, teniendo en cuenta que las edificaciones analizadas fueron de 3 niveles, bastaba que solo un nivel debería tener vulnerabilidad para generalizarlo en la edificación. Por ende, resulta que el 55% de la muestra son vulnerables, estas edificaciones son en su totalidad para uso de vivienda o tiendas pequeñas de pan, donde se tiene que dar atención al estado actual en el que se encuentran.

El segundo objetivo secundario fue establecer el nivel vulnerabilidad sísmica de las edificaciones del centro poblado de Sacsamarca basado en el método de evaluación nacional. Se generó el análisis en cada una de sus dimensiones, tales como fueron la vulnerabilidad social, económica y ambiental; cada una de ellas evaluadas con los índices de los parámetros en exposición, fragilidad y resiliencia. El resultado obtenido de la exposición social fue de 0.063, fragilidad social de 0.087 y resiliencia social de 0.322, cuyo resultado de vulnerabilidad social fue de 0.472 a partir de la suma de parámetros. El resultado de exposición económica fue de 0.129, fragilidad económica de 0.143 y resiliencia económica de 0.197, dando como resultado la vulnerabilidad económica de 0.469; y por último el resultado de exposición ambiental fue de 0.179, fragilidad ambiental de 0.368 y resiliencia ambiental de 0.167, con una vulnerabilidad ambiental de 0.714. Por ende, se concluye que la vulnerabilidad por el método de evaluación nacional tuvo como puntaje final 0.158, esto significa que la vulnerabilidad es alta, en un porcentaje de 31% para la población evaluada en el centro poblado de Sacsamarca.

6.2. Recomendaciones

Según el estudio realizado, para estimar la vulnerabilidad en edificaciones se recomienda, en el caso de una evaluación urgente el método de evaluación nacional. Ello ayudará a brindar un panorama amplio que posteriormente se puede utilizar la metodología cuantificativa que denote los aspectos estructurales en este caso el método de Hirosawa al primer nivel, si presenta vulnerabilidad se procede a realizar el análisis mediante el segundo nivel para establecer luego de ello soluciones ingenieriles tales como reforzamientos FRCM.

Se recomienda el uso de evaluación de Hirosawa modificado a estructural como albañilería confinada, desde el primer nivel de evaluación e incrementarlo según lo requiera el estudio al segundo o tercer nivel. Este análisis denota los comportamientos de edificaciones, que no solamente son de un tipo de sistema constructivo, sino, que evalúa evaluaciones mixtas, que es lo que se denota también en el Perú. Este método se va actualizando constantemente y

modificando en función de las normativas y nuevos acontecimientos sísmicos, debido a que ayudan a denotar las susceptibilidades y puede reducir los riesgos a los cuales se enfrentan las personas y edificaciones.

A partir de las evaluaciones de vulnerabilidad realizadas con el método de evaluación nacional, se recomienda ampliar el rango de análisis y diagnósticos según parámetros más puntuales en función de su vivienda. Así mismo, sería oportuno realizar una aplicación tecnológica donde ingresen los datos necesarios y observados, y se les muestre el nivel de vulnerabilidad, así como las posibles soluciones ingenieriles; esto en un trabajo multidisciplinario; a la comunidad de Sacsamarca y viviendas evaluadas, se recomienda generar reforzamiento para que sean menos inseguros ante eventos sísmicos. Además, para futuras construcciones se eviten seguir esos patrones de construcción visto en las viviendas analizadas. También que se utilicen los lineamientos del RNE y con asesoría técnica, teniendo en consideración que el suelo donde se construye es orgánico ya que toda la zona se dedica a la agricultura, no dejar al azar lo que se construye con mucho esfuerzo y años de dedicación de cada poblador.

Referencias Bibliográficas

- Bedoya, L. (2010). l. Clasificación de edificios y vulnerabilidad sísmicas de viviendas de bajo costo estructuradas con ferrocemento . España.
- Cámara Peruana de Construcción. (2003). *Costos y presupuesto en edificaciones*. Capeco. doi:https://civilyedaro.files.wordpress.com/2014/08/costos_y_presupuestos_en_edific acion_-_capeco_r.pdf
- Candebat, D., Leyva, K., & Centray, J. (2020). Un nuevo enfoque para la estimación preliminar de la vulnerabilidad sísmica de instalaciones educacionales. *Redalyc*. doi:https://www.redalyc.org/articulo.oa?id=193962633001
- Carrasco, S. (2016). Metodología de la investigación. Lima: San Marcos E.I.R.L.
- Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres. (2019).

 Manual para la evaluación de riesgos originados por fenómenos naturales.
- Chancafe, K. (2022). Evaluación de vulnerabilidad sísmica de viviendas en la ampliación Asentamiento Humano Vista Alegre – Casma, 2022. Chimbote: Universidad César Vallejo. Obtenido de https://hdl.handle.net/20.500.12692/93933
- Chávez, R., & Taipe, V. (2015). Análisis de la vulnerabilidad sísmica de las viviendas de albañilería confinada construidas informalmente en el Distrito de Huaytará, Provincia Huaytará, Región Huancavelica. Huancavelica: Región Huancavelica.
- Choctalin, P., & Marden. (2023). Evaluación del nivel de riesgo sísmico aplicado la metodología CENEPRED en la localidad de Jalca, Chachapoyas, Amazonas, Perú 2022. Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas. Obtenido de https://repositorío.untrm.edu.pe/handle/20.500.14077/3560
- CISMID. (2019). Estudio de la Vulnerabilidad Estructural Sísmica Sísmica de la Facultad de Ingeniería Civil Ingeniería de la Universidad Nacional de Ingeniería . Lima. Obtenido de http://www.cismid.uni.edu.pe/estudio-de-la-vulnerabilidad-estructural-sismica-

- sismica-de-la-facultad-de-ingenieria-civil-ingenieria-de-la-universidad-nacional-de-ingenieria-ingenieria/
- Condezo, Y., & Rodriguez, M. (2024). *Análisis y diseño de una edificación de albañilería de*5 pisos ubicado en el distrito de Magdalena. Obtenido de

 https://repositoríoacademico.upc.edu.pe/bitstream/handle/10757/671123/Condezo_R

 Y.pdf?sequence=1&isAllowed=y
- D'Ambra, C., Lignola, G., & Prota, A. (2021). Método para evaluar los efectos de refuerzo con FRCM sobre la capacidad de corte en el plano de muro de albañilería. *Construction and Building Materials*, 26(8), 121-125. doi:https://doi.org/10.1016/j.conbuildmat.2020.121125
- De Anda, J. (2020). Vulnerabilidad sísmica de edificios construidos antes de 1985 en la Ciudad de México a raíz del sismo del 19 de septiembre de 2017. México: Universidad Autonoma Metropolitana. Obtenido de http://zaloamati.azc.uam.mx/handle/11191/9442
- Diarío La República. (07 de Agosto de 2020). *La República sociedad*. Obtenido de https://larepublica.pe/sociedad/2020/08/07/temblor-en-junin-hoy-7-de-agosto-2020-donde-fue-el-epicentro-del-ultimo-sismo-en-peru-de-hace-unos-minutos-igp-twitter/?ref=lre
- Echevarria, J., & Monroy, M. (2021). Aplicación del método de índice de vulnerabilidad (Benedetti y Petrini) para evaluación de edificaciones de mampostería no reforzada en el barrío Surinama. Colombia: Universidad Santo Tomas. Obtenido de https://repository.usta.edu.co/handle/11634/33800?show=full
- El-etar, S. (2018). Seismic vulnerability evaluation of existing R.C. buildings. *HBRC Journal*. doi:https://doi.org/10.1016/j.hbrcj.2016.09.002

- Espinoza, G. (2020). *Vulnerabilidad Sísmica a través del método Misaya Hirosawa en el edificio municipal de San Miguel Lima 2020*. Lima: Universidad César Vallejo.

 Obtenido de https://repositorío.ucv.edu.pe/bitstream/handle/20.500.12692/53046/Espinoza_CG-SD.pdf?sequence=1&isAllowed=y
- Gomez, C., & Pardo, M. (2023). Análisis y evaluación de la vulnerabilidad de los riesgos símicos de la Iglesia Santa Rosa de Lima Distrito de Callería Provincia Coronel Portillo- Departamento de Ucayali. Pucallpa: Universidad Nacional de Ucayali. Obtenido de http://repositorío.unu.edu.pe/handle/UNU/6462
- Grande, E., & Milani, G. (2021). Modelado de sistema de refuerzo FRCM aplicados externamente sobre substratos de albañilería. *Engineering Structures*, 23(3), 111-118. doi:https://doi.org/10.1016/j.engstruct.2021.111895
- Harper, E. (2013). MANUAL DE SISTEMAS ELECTRICOS , INDUSTRIALES Y COMERCIALES. México: Limusa.
- Hernandez, R., & Mendoza, C. (2018). *Metodologia de la Investigación*. México: MC Graw Hill.
- Hernández, R., & Mendoza, C. (2018). *Metodología de la Investigación*. Mc Graw Hill Education. doi: https://doi.org/978-1-4562-6096 -5
- Juste, I. (2017). *Cuáles son los países con mayor riesgo sísmico conoce la lista*. Obtenido de https://educacion.uncomo.com/articulo/cuales-son-los-paises-con-mayor-riesgo-sismico-conoce-la-lista-47625.html
- Malvare, J. (2019). Evaluación de Riesgo Sísmico en la zona urbana del Distrito de Socos, utilizando la metodología del Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres (CENEPRED). [Tesis de grado. Universidad Nacional de San

- Cristóbal de Huamang. Huamanga: Universidad Nacional de San Cristóbal de Huamanga. doi:http://repositorío.unsch.edu.pe/handle/UNSCH/3904
- Maya, E. (2022). Métodos y técnicas de investigación. Una propuesta ágil para la presentación de trabajos científicos en las áreas de arquitectura, urbanismo y disciplinas afines.

 Obtenido de http://www.librosoa.unam.mx/bitstream/handle/123456789/2418/metodos_y_tec
- Medina, J., & Pimichumo, C. (2019). *Vulnerabilidad Sísmica de la Ciudad de Monsefú*aplicando los Índices de Benedetti Petrini. Perú. .

 https://repositorío.unprg.edu.pe/handle/20.500.12893/3143.
- Ministerío del Ambiente. (2011). *Memoria descriptiva del mapa de vulnerabilidad física del Perú* (Primera edición ed.). Depósito legal en la Biblioteca Nacional. Obtenido de http://bvpad.indeci.gob.pe/doc/pdf/esp/doc1851/doc1851-contenido.pdf
- Muñoz Peláez, A. (2020). *Comentaríos a la Norma E 0.30 Diseño Sismorresistente*. Sencico. Recuperado el 17 de octubre de 2022
- Norma Técnica E.030. (2018). Diseño Sismorresistente. Lima: Sencico.
- Norma Técnica E.070. (2020). *Albañilería*. Sencico. Recuperado el 03 de octubre de 2022, de https://drive.google.com/drive/u/1/folders/1v8Kx7mGSy4Qvx8qgN09ZCPKEvgG1h kBU
- Pan American Health in Publication Data. (2000). *Principles of Disaster Mitigationn in Health Facilities*. Washington, D.C.: Disaster Mitigation Series.
- Pedrosa, J. (2015). *economipedia*. Obtenido de https://economipedia.com/definiciones/costede-oportunidad.html
- Pilco, H., & Portugal, R. (2022). *Vulnerabilidad sísmica mediante el análisis Pushover del Hospital de la Solidaridad, Tacna*, 2022. Tacna: Universidad Privada de Tacna. Obtenido de http://hdl.handle.net/20.500.12969/2315

- Quiroz, D., & Vasquez, E. (2020). Análisis de la vulnerabilidad sísmica de las instituciones educativas públicas de nivel primarío y secundarío del distrito de Mochumí-Lambayeque. Lima: Universidad Señor de Sipán. Obtenido de https://hdl.handle.net/20.500.12802/7537
- Ramírez, R., & Miguel, T. (2024). Evaluación de la vulnerabilidad sísmica de edificios históricos de mampostería usando modelos semánticos apoyados en evidencias empíricas: Aprendizajes en México. Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres, 8(1), 131-150. doi:https://doi.org/10.55467/reder.v8i1.142
- Socarrás, Y., & Alvarez, E. (2021). Limitaciones de los estudios de vulnerabilidad sísmica a edificaciones de hormigón en Santiago de Cuba. *Empresa de proyectos de arquitectura e ingenieria*. doi:https://www.redalyc.org/journal/1939/193969257004/
- Vera, J. (2022). Vulnerabilidad sísmica de las edificaciones de albañilería del Asentamiento Humano Los Triunfadores del distrito de Ate, 2022. Lima: Universidad César Vallejo. Obtenido de https://hdl.handle.net/20.500.12692/106941
- Villaba, M., & Gónzalez, M. (2020). Evaluación de la vulnerabilidad sísmica para un sector de la comuna 2 del municipio de Dosquebradas-Risaralda-Colombia. Colombia: Universidad Militar Nueva Granada. Obtenido de http://hdl.handle.net/10654/37969
- Villacorta, S., Fidel, L., & Zavala, B. (2012). Mapa de susceptibilidad por movimientos en masa del Perú. *Revista de la Asociación Geológica Argentina*, 69(3), 393-399.

ANEXOS

Anexo 1. Matriz de Consistencia

Problemas	Objetivos	Hipótesis	Variables	Metodología
Problema General	Objetivo General	Hipótesis General		Diseño
¿De que manera se realizará la evaluación comparativa de	Realizar la evaluación	La evaluación	WARNER T	No experimental
vulnerabilidad sísmica basado en los métodos de Hirosawa y CENEPRED en edificaciones	comparativa de vulnerabilidad sísmica basado en los métodos	comparativa de vulnerabilidad sísmica basado en los métodos	VARIABLE 1	Тіро
del centro poblado de Sacsamarca, Tarma?	de Hirosawa y CENEPRED en	de Hirosawa y CENEPRED, de	Vulnerabilidad	Aplicado
	edificaciones del centro	edificaciones del centro	sísmica basado en los	
	poblado de Sacsamarca,	poblado de Sacsamarca, Tarma;	métodos de Hirosawa y	Alcance
	Tarma.	muestran que más del 30% son	CENEPRED	Transversal
		vulnerables, con ambos		
		métodos.		Población
Problema Especifico	Objetivo Específicos	Hipótesis específicas	VARIABLE 2	20 edificaciones de 3
• ¿De qué manera se evaluará los índices y nivel	Determinar los índices y nivel vulnerabilidad sísmica	Se podrá conocer los índices v el nivel vulnerabilidad	Edificaciones de	niveles de albañilería confinada
los índices y nivel vulnerabilidad sísmica de edificaciones del centro	de edificaciones del centro poblado de Sacsamarca	sísmica de las edificaciones del centro poblado de	albañilería confinada	del centro poblado de
poblado de Sacsamarca	1	1		Sacsamarca

basado en el método de Hirosawa? • ¿De qué manera se evaluará el nivel vulnerabilidad sísmica de edificaciones del centro poblado de Sacsamarca basado en el método de CENEPRED?	basado en el método de Hirosawa. • Establecer el nivel vulnerabilidad sísmica de edificaciones del centro poblado de Sacsamarca basado en el método de CENEPRED.	Sacsamarca basado en el método de Hirosawa. • Se podrá establecer el nivel vulnerabilidad sísmica de las edificaciones del centro poblado de Sacsamarca basado en el método de CENEPRED.	Muestra No probabilística, la muestra fue igual que la población
			Técnicas Observación y causal - comparativo Instrumentos Hoja de cálculo basado en método de Hirosawa Hoja de verificación establecida por CENEPRED

ANEXO 2. Análisis de edificaciones en hoja de cálculo

EDFICACIÓN 1

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO			200			T	-6	1
n	3			Número de	pisos						1
Peso/m²	800	kgf/m²		Peso por pi	so por m²						1
Área del Piso	120.00	m²		Área del Pis	0						1
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería	6					
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	210	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla	ı	Albañ	ilería Conf	inada							45
Nivel	t	L	Número	A	Time de Floresente	C _{ma}	α ₁	α2	α3	F	E,
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					•
Muro 1	13	400	6	31200	Albañilería Confinada	96314.4	1.000	0.700	0.500	0.800	0.268
Muro 2	13	200	4	10400	Albañilería Confinada	32104.8	1.000	0.700	0.500	0.800	0.089
Muro 3	13	150	8	15600	Albañilería Confinada	48157.2	1.000	0.700	0.500	0.800	0.134
Muro 4	13	120	4	6240	Albañilería Confinada	19262.9	1.000	0.700	0.500	0.800	0.054

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO					ĺ		ĺ	
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	120	m²		Área del Pis	50						
τ ₀	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Conf	inada							
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α ₁	α_2	a ₃	F	E _p
2	cm	cm	de veces	cm	Tipo de Liemento	A. Confinada					
Muro 1	13	400	6	31200	Albañilería Confinada	86954.4	1.000	0.700	0.500	0.800	0.290
Muro 2	13	200	4	10400	Albañilería Confinada	28984.8	1.000	0.700	0.500	0.800	0.097
Muro 3	13	150	6	11700	Albañilería Confinada	32607.9	1.000	0.700	0.500	0.800	0.109
Muro 4	13	120	4	6240	Albañilería Confinada	17390.9	1.000	0.700	0.500	0.800	0.058

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	120	m²		Área del Pis	50						
τ ₀	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del conci	eto					
Modo de Falla	l	Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α1	α2	α3	F	E _p
3	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	400	6	31200	Albañilería Confinada	77594.4	1.000	0.700	0.500	0.800	0.431
Muro 2	13	200	4	10400	Albañilería Confinada	25864.8	1.000	0.700	0.500	0.800	0.144
Muro 3	13	150	2	3900	Albañilería Confinada	9699.3	1.000	0.700	0.500	0.800	0.054
Muro 4	13	120	2	3120	Albañilería Confinada	7759.4	1.000	0.700	0.500	0.800	0.043

	CAPA	CIDAD	DEMANDA	
	E ₀	Is	Iso	Status
3er Nivel	0.672	0.605	0.48	No Vulnerable
2do Nivel	0.553	0.498	0.48	No Vulnerable
1er Nivel	0.544	0.490	0.48	No Vulnerable
	Esta	do de edific	No Vulnerable	

EDFICACIÓN 2

PRIMER NIVEL

MÉTODO DE	HIROSAV	VA MODIFIC	CADO					3	MA		
n	3			Número de	pisos						//
Peso/m²	800	kgf/m²		Peso por pi	so por m²				30	201	1
Área del Piso	100.00	m²		Área del Pis	60						1)
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería				1		
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso					10	1/2-
fc	210	kgf/cm²		Resistencia	a la compresión del concreto					7/1/2	
Modo de Falla		Albañ	ilería Con	finada				ME		1	
Nivel	•	L		A						F	
Nivei	ι	L	Número	A	Tipo de Elemento	C _{ma}	α1	α2	α3	г	E _p
1	cm	cm	de veces	cm	Tipo de Liemento	A. Confinada					
Muro 1	13	500	2	13000	Albañilería Confinada	40131.0	1.000	0.700	0.500	0.800	0.134
Muro 2	13	400	2	10400	Albañilería Confinada	32104.8	1.000	0.700	0.500	0.800	0.107
Muro 3	13	600	2	15600	Albañilería Confinada	48157.2	1.000	0.700	0.500	0.800	0.161
Muro 4	13	500	2	13000	Albañilería Confinada	40131.0	1.000	0.700	0.500	0.800	0.134
Muro 5	13	200	1	2600	Albañilería Confinada	8026.2	1.000	0.700	0.500	0.800	0.027

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	131	m²		Área del Pis	50						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	rial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α ₁	α2	α3	F	E _p
2	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	550	4	28600	Albañilería Confinada	79708.2	1.000	0.700	0.500	0.800	0.243
Muro 2	13	450	2	11700	Albañilería Confinada	32607.9	1.000	0.700	0.500	0.800	0.100
Muro 3	13	350	4	18200	Albañilería Confinada	50723.4	1.000	0.700	0.500	0.800	0.155
Muro 4	13	600	2	15600	Albañilería Confinada	43477.2	1.000	0.700	0.500	0.800	0.133

TTO LITT	11 1 121										
MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	148	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Abañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del conci	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α1	α2	α3	F	E _p
3	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	575	4	29900	Albañilería Confinada	74361.3	1.000	0.700	0.500	0.800	0.335
Muro 2	13	450	2	11700	Albañilería Confinada	29097.9	1.000	0.700	0.500	0.800	0.131
Muro 3	13	375	4	19500	Albañilería Confinada	48496.5	1.000	0.700	0.500	0.800	0.218
Muro 4	14	650	2	18200	Albañilería Confinada	45263.4	1.000	0.700	0.500	0.800	0.204

RESULTADO

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.888	0.711	0.48	No Vulnerable
2do Nivel	0.631	0.504	0.48	No Vulnerable
1er Nivel	0.562	0.449	0.48	Vulnerable
	Esta	do de edific	Vulnerable	

EDFICACIÓN 3

PRIMER NIVEL

MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²				Res WA	Ma.	-
Área del Piso	200.00	m²		Área del Pis	60					ARM	N.E.
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería					1	
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso				MARIE		
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto						
Modo de Falla		Albañ	ilería Con	finada							
											-
Nivel	t	L	Número	Α		C _{ma}	α1	α2	α3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	10	65000	Albañilería Confinada	200655.0	1.000	0.700	0.500	0.800	0.334
Muro 2	13	100	4	5200	Albañilería Confinada	16052.4	1.000	0.700	0.500	0.800	0.027
Muro 3	13	300	4	15600	Albañilería Confinada	48157.2	1.000	0.700	0.500	0.800	0.080
Muro 4	13	350	3	13650	Albañilería Confinada	42137.6	1.000	0.700	0.500	0.800	0.070

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	200.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	210	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α1	α_2	α3	F	E _p
2	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	500	10	65000	Albañilería Confinada	181155.0	1.000	0.700	0.500	0.800	0.362
Muro 2	13	100	4	5200	Albañilería Confinada	14492.4	1.000	0.700	0.500	0.800	0.029
Muro 3	13	300	8	31200	Albañilería Confinada	86954.4	1.000	0.700	0.500	0.800	0.174
Muro 4	13	350	5	22750	Albañilería Confinada	63404.3	1.000	0.700	0.500	0.800	0.127

TERCER NIVEL

MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	200.00	m²		Área del Pis	60						
το	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	210	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α_1	α_2	α3	F	E _p
3	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	500	10	65000	Albañilería Confinada	161655.0	1.000	0.700	0.500	0.800	0.539
Muro 2	13	100	4	5200	Albañilería Confinada	12932.4	1.000	0.700	0.500	0.800	0.043
Muro 3	13	300	8	31200	Albañilería Confinada	77594.4	1.000	0.700	0.500	0.800	0.259
Muro 4	13	350	5	22750	Albañilería Confinada	56579.3	1.000	0.700	0.500	0.800	0.189

	CAPA	CIDAD	DEMANDA	Ctatura
	E ₀	ls	Iso	Status
3er Nivel	1.029	0.926	0.48	No Vulnerable
2do Nivel	0.692	0.623	0.48	No Vulnerable
1er Nivel	0.512	0.461	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 4

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO					NO AND	-		
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²			THE			
Área del Piso	150.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería			CONTRACTOR OF THE PARTY OF THE	AND DESCRIPTION OF THE PERSON	The same of the sa	The same of the sa
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso					Se Borne	
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto					BOTICA FabyFarr	na
Modo de Falla		Albañ	ilería Con	finada					31		TI
Nivel	t	L	Námoro	A		C _{ma}	α1	α_2	α3	F	E,
1	cm	cm	Número de veces		Tipo de Elemento	A. Confinada	1		3	-	р
Muro 1	13	400	8	41600	Albañilería Confinada	128419.2	1.000	0.700	0.500	0.800	0.285
Muro 2	13	100	4	5200	Albañilería Confinada	16052.4	1.000	0.700	0.500	0.800	0.036
Muro 3	13	300	3	11700	Albañilería Confinada	36117.9	1.000	0.700	0.500	0.800	0.080
Muro 4	13	500	1	6500	Albañilería Confinada	20065.5	1.000	0.700	0.500	0.800	0.045

SEGUNDO NIVEL

EGOIL											
MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	155.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α ₁	α2	α3	F	E _p
2	cm	cm	de veces	cm	ripo do Liomonto	A. Confinada					
Muro 1	13	400	8	41600	Albañilería Confinada	115939.2	1.000	0.700	0.500	0.800	0.299
Muro 2	13	100	2	2600	Albañilería Confinada	7246.2	1.000	0.700	0.500	0.800	0.019
Muro 3	13	300	5	19500	Albañilería Confinada	54346.5	1.000	0.700	0.500	0.800	0.140
Muro 4	13	500	3	19500	Albañilería Confinada	54346.5	1.000	0.700	0.500	0.800	0.140

MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	155.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α_1	α2	α3	F	E _p
3	cm	cm	de veces	cm	Tipo de Liemento	A. Confinada					
Muro 1	13	400	10	52000	Albañilería Confinada	129324.0	1.000	0.700	0.500	0.800	0.556
Muro 2	13	100	3	3900	Albañilería Confinada	9699.3	1.000	0.700	0.500	0.800	0.042
Muro 3	13	300	3	11700	Albañilería Confinada	29097.9	1.000	0.700	0.500	0.800	0.125
Muro 4	13	500	3	19500	Albañilería Confinada	48496.5	1.000	0.700	0.500	0.800	0.209

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.932	0.839	0.48	No Vulnerable
2do Nivel	0.598	0.539	0.48	No Vulnerable
1er Nivel	0.446	0.401	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 5

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								100
n	3			Número de	pisos						A
Peso/m²	800	kgf/m²		Peso por pis	so por m²				-		
Área del Piso	63.00	m²		Área del Pis	0				-8-		
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						48
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						21.00
fc	210	kgf/cm²		Resistencia	a la compresión del concreto						
Modo de Falla		Albañ	ilería Con	finada						7	
Nivel	t	L	Número	A		C _{ma}	α1	α,	α_3	F F	E,
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada		-			
Muro 1	13	400	6	31200	Albañilería Confinada	96314.4	1.000	0.700	0.500	0.800	0.510
Muro 2	13	350	2	9100	Albañilería Confinada	28091.7	1.000	0.700	0.500	0.800	0.149
Muro 3	13	300	2	7800	Albañilería Confinada	24078.6	1.000	0.700	0.500	0.800	0.127

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	63.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tino do Elemento	C _{ma}	α ₁	α2	α_3	F	E _p
2	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	400	6	31200	Albañilería Confinada	86954.4	1.000	0.700	0.500	0.800	0.552
Muro 2	13	350	2	9100	Albañilería Confinada	25361.7	1.000	0.700	0.500	0.800	0.161
Muro 3	13	300	2	7800	Albañilería Confinada	21738.6	1.000	0.700	0.500	0.800	0.138
Muro 4	13	200	3	7800	Albañilería Confinada	21738.6	1.000	0.700	0.500	0.800	0.138

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	63.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α1	α2	α3	F	E _p
3	cm	cm	de veces	cm	Tipo de Liemento	A. Confinada					
Muro 1	13	400	6	31200	Albañilería Confinada	77594.4	1.000	0.700	0.500	0.800	0.821
Muro 2	13	350	2	9100	Albañilería Confinada	22631.7	1.000	0.700	0.500	0.800	0.239
Muro 3	13	300	2	7800	Albañilería Confinada	19398.6	1.000	0.700	0.500	0.800	0.205
Muro 4	13	200	3	7800	Albañilería Confinada	19398.6	1.000	0.700	0.500	0.800	0.205

RESULTADO

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	1.471	1.324	0.48	No Vulnerable
2do Nivel	0.989	0.890	0.48	No Vulnerable
1er Nivel	0.786	0.707	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 6 PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO							100	
n	3			Número de	oisos						80
Peso/m²	800	kgf/m²		Peso por pis	o por m²						
Área del Piso	300.00	m²		Área del Pis)						L M
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	6	kgf/cm²		Esfuerzo Axi	al en albañilería por piso				1		
fc	210	kgf/cm²		Resistencia	a la compresión del concreto					OWN COMMAND	-
Modo de Falla		Albañ	ilería Conf	inada				1000			
								1			
Nivel	t	L	Número	Α		C _{ma}	α,	α_2	α3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
	40	500	15	97500	Albañilería Confinada	300982.5	1.000	0.700	0.500	0.800	0.334
Muro 1	13	000					4 000	0.700	0.500	0.800	0.125
Muro 1 Muro 2	13	400	7	36400	Albañilería Confinada	112366.8	1.000	0.700	0.500	0.000	0.123
			7		Albañilería Confinada Albañilería Confinada	112366.8 24078.6	1.000	0.700	0.500	0.800	0.123
Muro 2	13	400	7 2 6								

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	300.00	m²		Área del Pis	60						
τ ₀	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Cont	finada							
Nivel	t	L	Número	A		C _{ma}	α1	α,	α3	F	E _p
2	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada		-	•		
Muro 1	13	500	15	97500	Albañilería Confinada	271732.5	1.000	0.700	0.500	0.800	0.362
Muro 2	13	400	10	52000	Albañilería Confinada	144924.0	1.000	0.700	0.500	0.800	0.193
Muro 3	13	300	2	7800	Albañilería Confinada	21738.6	1.000	0.700	0.500	0.800	0.029
Muro 4	13	250	6	19500	Albañilería Confinada	54346.5	1.000	0.700	0.500	0.800	0.072
Muro 5	14	200	3	8400	Albañilería Confinada	23410.8	1.000	0.700	0.500	0.800	0.031

TERCER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	300.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α ₁	α2	a ₃	F	E _p
3	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	10	65000	Albañilería Confinada	161655.0	1.000	0.700	0.500	0.800	0.359
Muro 2	13	400	6	31200	Albañilería Confinada	77594.4	1.000	0.700	0.500	0.800	0.172
Muro 3	13	300	2	7800	Albañilería Confinada	19398.6	1.000	0.700	0.500	0.800	0.043
Muro 4	13	250	4	13000	Albañilería Confinada	32331.0	1.000	0.700	0.500	0.800	0.072
Muro 5	14	200	2	5600	Albañilería Confinada	13927.2	1.000	0.700	0.500	0.800	0.031

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.678	0.610	0.48	No Vulnerable
2do Nivel	0.688	0.619	0.48	No Vulnerable
1er Nivel	0.580	0.522	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 7

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	ADO								1
n	3			Número de	pisos						T
Peso/m²	800	kgf/m²		Peso por pi	so por m²			1			
Área del Piso	35.00	m²		Área del Pis	60				Name of the last	-	
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería			114		D. T.	
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						Total Control of the
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto					Alem	
Modo de Falla		Albañ	ilería Conf	finada							
Nivel	t	L	Número	A		C _{ma}	α ₁	α2	α3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	4	26000	Albañilería Confinada	80262.0	1.000	0.700	0.500	0.800	0.764
Muro 2	13	350	3	13650	Albañilería Confinada	42137.6	1.000	0.700	0.500	0.800	0.401
Muro 3	13	200	3	7800	Albañilería Confinada	24078.6	1.000	0.700	0.500	0.800	0.229

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	35.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel			Número	A		6				F	
	ı				Tipo de Elemento	C _{ma}	α1	α2	α3	г	Ep
2	cm	cm	de veces	cm	·	A. Confinada					
Muro 1	13	500	4	26000	Albañilería Confinada	72462.0	1.000	0.700	0.500	0.800	0.828
Muro 2	13	350	3	13650	Albañilería Confinada	38042.6	1.000	0.700	0.500	0.800	0.435
Muro 3	13	200	3	7800	Albañilería Confinada	21738.6	1.000	0.700	0.500	0.800	0.248

EKCEK											
MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	35.00	m²		Área del Pis	50						
τ_0	8.1	kgf/cm²		Esfuerzo de	e corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	rial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	reto					
Modo de Falla	l	Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α1	α2	α3	F	E _p
3	cm	cm	de veces	cm	Tipo de Liemento	A. Confinada					
Muro 1	13	500	4	26000	Albañilería Confinada	64662.0	1.000	0.700	0.500	0.800	1.232
Muro 2	13	300	2	7800	Albañilería Confinada	19398.6	1.000	0.700	0.500	0.800	0.369
Muro 3	13	250	1	3250	Albañilería Confinada	8082.8	1.000	0.700	0.500	0.800	0.154
Muro 4	13	200	2	5200	Albañilería Confinada	12932.4	1.000	0.700	0.500	0.800	0.246

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	2.001	1.801	0.48	No Vulnerable
2do Nivel	1.511	1.360	0.48	No Vulnerable
1er Nivel	1.395	1.256	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 8

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO					1			
n	3			Número de	pisos					-	-
Peso/m²	800	kgf/m²		Peso por pi	so por m²			W	4-0		
Área del Piso	70.00	m²		Área del Pis	60					3	
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería				1	F	+1-1-
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso			4		-	signed by
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto			0	nue un		
Modo de Falla		Albañ	ilería Cont	finada							
Nivel	t	L	Número	A		C _{ma}	α1	α_2	α_3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	10	65000	Albañilería Confinada	200655.0	1.000	0.700	0.500	0.800	0.956
Muro 2	13	400	6	31200	Albañilería Confinada	96314.4	1.000	0.700	0.500	0.800	0.459
Muro 3	13	250	4	13000	Albañilería Confinada	40131.0	1.000	0.700	0.500	0.800	0.191

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	70.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α1	α2	α3	F	Ep
2	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	500	10	65000	Albañilería Confinada	181155.0	1.000	0.700	0.500	0.800	1.035
Muro 2	13	400	6	31200	Albañilería Confinada	86954.4	1.000	0.700	0.500	0.800	0.497
Muro 3	13	250	4	13000	Albañilería Confinada	36231.0	1.000	0.700	0.500	0.800	0.207
Muro 4	13	300	2	7800	Albañilería Confinada	21738.6	1.000	0.700	0.500	0.800	0.124

MÉTODO DE	HIROSAW	A MODIFIC	ADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	70.00	m²		Área del Pis	SO						
τ_0	8.1	kgf/cm²		Esfuerzo de	e corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	rial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del conci	reto					
Modo de Falla	l	Albañ	ilería Con	finada							
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α1	α2	a ₃	F	E _p
3	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	500	10	65000	Albañilería Confinada	161655.0	1.000	0.700	0.500	0.800	1.540
Muro 2	13	400	6	31200	Albañilería Confinada	77594.4	1.000	0.700	0.500	0.800	0.739
Muro 3	13	250	4	13000	Albañilería Confinada	32331.0	1.000	0.700	0.500	0.800	0.308
Muro 4	13	200	2	5200	Albañilería Confinada	12932.4	1.000	0.700	0.500	0.800	0.123

RESULTADO

	CAPA	CIDAD	DEMANDA	Chahara
	E ₀	ls	Iso	Status
3er Nivel	2.710	2.439	0.48	No Vulnerable
2do Nivel	1.863	1.677	0.48	No Vulnerable
1er Nivel	1.605	1.445	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 9

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO							1/1	
n	3			Número de	pisos						-
Peso/m²	800	kgf/m²		Peso por pis	so por m²		Į.	T. I. I.		THE REAL PROPERTY.	
Área del Piso	200.00	m²		Área del Pis	0				A Cindon		
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería			A STATE OF THE PARTY OF THE PAR			
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						The same of
fc	210	kgf/cm²		Resistencia	a la compresión del concreto		-		25.0		DEYM
Modo de Falla		Albañ	ilería Con	finada					2012		聪
										R	
Nivel	t	L	Número	Α		C _{ma}	α1	α2	α_3	F	Ep
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	600	11	85800	Albañilería Confinada	264864.6	1.000	0.700	0.500	0.800	0.441
Muro 2	13	400	6	31200	Albañilería Confinada	96314.4	1.000	0.700	0.500	0.800	0.161
Muro 3	13	250	4	13000	Albañilería Confinada	40131.0	1.000	0.700	0.500	0.800	0.067
Muro 4	13	550	4	28600	Albañilería Confinada	88288.2	1.000	0.700	0.500	0.800	0.147
Muro 5	13	350	5	22750	Albañilería Confinada	70229.3	1.000	0.700	0.500	0.800	0.117

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	200.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Cont	finada							
Nivel	t	L	Número	A		C _{ma}	α1	α,	α3	F	E _p
2	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada		2	3		Р
Muro 1	13	600	8	62400	Albañilería Confinada	173908.8	1.000	0.700	0.500	0.800	0.348
Muro 2	13	400	6	31200	Albañilería Confinada	86954.4	1.000	0.700	0.500	0.800	0.174
Muro 3	13	250	4	13000	Albañilería Confinada	36231.0	1.000	0.700	0.500	0.800	0.072
Muro 4	13	550	4	28600	Albañilería Confinada	79708.2	1.000	0.700	0.500	0.800	0.159
Muro 5	14	350	10	49000	Albañilería Confinada	136563.0	1.000	0.700	0.500	0.800	0.273

TERCER NIVEL

ENCER	TALAT	<u> </u>									
MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	200.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	inada							
Wodo de l'alla		Albali	nena com	iliaua							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α_1	α_2	α3	F	E _p
3	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	600	8	62400	Albañilería Confinada	155188.8	1.000	0.700	0.500	0.800	0.517
Muro 2	13	400	6	31200	Albañilería Confinada	77594.4	1.000	0.700	0.500	0.800	0.259
Muro 3	13	250	4	13000	Albañilería Confinada	32331.0	1.000	0.700	0.500	0.800	0.108
Muro 4	13	550	4	28600	Albañilería Confinada	71128.2	1.000	0.700	0.500	0.800	0.237
Muro 5	14	350	10	49000	Albañilería Confinada	121863.0	1.000	0.700	0.500	0.800	0.406

	CAPA	CIDAD	DEMANDA	
	E ₀	Is	Iso	Status
3er Nivel	1.527 1.374		0.48	No Vulnerable
2do Nivel	1.027	0.924	0.48	No Vulnerable
1er Nivel	0.933	0.840	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 10

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO						1	3/9/	
n	3			Número de	pisos						1
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	180.00	m²		Área del Pis	60			1			
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería			1			
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso			-			
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto						
Modo de Falla		Albañ	ilería Con	finada					a		
Nivel	t	L	Número	Α		C _{ma}	α_1	α_2	α_3	F	E_p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	8	52000	Albañilería Confinada	160524.0	1.000	0.700	0.500	0.800	0.297
Muro 2	13	400	4	20800	Albañilería Confinada	64209.6	1.000	0.700	0.500	0.800	0.119
Muro 3	13	250	4	13000	Albañilería Confinada	40131.0	1.000	0.700	0.500	0.800	0.074
Muro 4	13	350	4	18200	Albañilería Confinada	56183.4	1.000	0.700	0.500	0.800	0.104
Muro 5	13	600	2	15600	Albañilería Confinada	48157.2	1.000	0.700	0.500	0.800	0.089

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	180.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α_1	α_2	α3	F	Ep
2	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	500	8	52000	Albañilería Confinada	144924.0	1.000	0.700	0.500	0.800	0.322
Muro 2	13	400	8	41600	Albañilería Confinada	115939.2	1.000	0.700	0.500	0.800	0.258
Muro 3	13	250	4	13000	Albañilería Confinada	36231.0	1.000	0.700	0.500	0.800	0.081
Muro 4	13	350	4	18200	Albañilería Confinada	50723.4	1.000	0.700	0.500	0.800	0.113

MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	180.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A	Tipo de Elemento	C _{ma}	α1	α2	α3	F	E _p
3	cm	cm	de veces	cm	Tipo de Liemento	A. Confinada					
Muro 1	13	500	8	52000	Albañilería Confinada	129324.0	1.000	0.700	0.500	0.800	0.479
Muro 2	13	400	8	41600	Albañilería Confinada	103459.2	1.000	0.700	0.500	0.800	0.383
Muro 3	13	250	4	13000	Albañilería Confinada	32331.0	1.000	0.700	0.500	0.800	0.120
Muro 4	13	350	4	18200	Albañilería Confinada	45263.4	1.000	0.700	0.500	0.800	0.168

	CAPA	CIDAD	DEMANDA	Ctatura
	E ₀	ls	Iso	Status
3er Nivel	1.150	1.035	0.48	No Vulnerable
2do Nivel	0.773	0.696	0.48	No Vulnerable
1er Nivel	0.684	0.615	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 11

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO					1 1			
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²			1 5			TIII.
Área del Piso	300.00	m²		Área del Pis	60			THE REAL PROPERTY.	2000年		190
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería			Total Control	-	WHICH !	100
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						MM 2
fc	210	kgf/cm²		Resistencia	a la compresión del concreto				HAI	111	
Modo de Falla		Albañ	ilería Con	finada							
								A			
Nivel	t	L	Número	Α		C _{ma}	α_1	α_2	α3	F	Ep
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	18	117000	Albañilería Confinada	361179.0	1.000	0.700	0.500	0.800	0.401
Muro 2	13	400	10	52000	Albañilería Confinada	160524.0	1.000	0.700	0.500	0.800	0.178
Muro 3	13	300	10	39000	Albañilería Confinada	120393.0	1.000	0.700	0.500	0.800	0.134
Muro 4	13	350	8	36400	Albañilería Confinada	112366.8	1.000	0.700	0.500	0.800	0.125
Muro 5	13	600	8	62400	Albañilería Confinada	192628.8	1.000	0.700	0.500	0.800	0.214

MÉTODO DE			*ADO								
METODO DE	HIKUSAW	AWODIFIC	ADU								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	300.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Cont	finada							
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α_1	α2	α3	F	E _p
2	cm	cm	de veces	cm	ripo de Liemento	A. Confinada					
Muro 1	13	500	20	130000	Albañilería Confinada	362310.0	1.000	0.700	0.500	0.800	0.483
Muro 2	13	400	12	62400	Albañilería Confinada	173908.8	1.000	0.700	0.500	0.800	0.232
Muro 3	13	300	10	39000	Albañilería Confinada	108693.0	1.000	0.700	0.500	0.800	0.145
Muro 4	13	350	8	36400	Albañilería Confinada	101446.8	1.000	0.700	0.500	0.800	0.135
Muro 5	14	600	4	33600	Albañilería Confinada	93643.2	1.000	0.700	0.500	0.800	0.125

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	300.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	tial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla	l	Albañ	ilería Con	finada							
Nivel	t	L	Número	A		C _{ma}	α1	α,	a ₃	F	E,
3	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada		_			
Muro 1	13	500	20	130000	Albañilería Confinada	323310.0	1.000	0.700	0.500	0.800	0.718
Muro 2	13	400	12	62400	Albañilería Confinada	155188.8	1.000	0.700	0.500	0.800	0.345
Muro 3	13	300	10	39000	Albañilería Confinada	96993.0	1.000	0.700	0.500	0.800	0.216
Muro 4	13	350	8	36400	Albañilería Confinada	90526.8	1.000	0.700	0.500	0.800	0.201
Muro 5	14	600	4	33600	Albañilería Confinada	83563.2	1.000	0.700	0.500	0.800	0.186

RESULTADO

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	1.666	1.499	0.48	No Vulnerable
2do Nivel	1.120	1.008	0.48	No Vulnerable
1er Nivel	1.052	0.947	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 12

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO						A 100		ALC: Y
n	3			Número de	pisos					1 3 5	
Peso/m²	800	kgf/m²		Peso por pi	so por m²				2. 1		
Área del Piso	70.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería				AL III	10.7	1
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						100
fc	210	kgf/cm²		Resistencia	a la compresión del concreto				79		
Modo de Falla		Albañ	ilería Con	finada						de	
Nivel	t	L	Número	A		C _{ma}	α1	α_2	α_3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	5	32500	Albañilería Confinada	100327.5	1.000	0.700	0.500	0.800	0.478
Muro 2	13	300	1	3900	Albañilería Confinada	12039.3	1.000	0.700	0.500	0.800	0.057
Muro 3	13	200	1	2600	Albañilería Confinada	8026.2	1.000	0.700	0.500	0.800	0.038

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	70.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	4		Número	A						F	
Nivei	ι	L		A	Tipo de Elemento	C _{ma}	α1	α2	α3	г	Ep
2	cm	cm	de veces	cm	· ·	A. Confinada					
Muro 1	13	500	5	32500	Albañilería Confinada	90577.5	1.000	0.700	0.500	0.800	0.518
Muro 2	13	300	2	7800	Albañilería Confinada	21738.6	1.000	0.700	0.500	0.800	0.124
Muro 3	13	200	2	5200	Albañilería Confinada	14492.4	1.000	0.700	0.500	0.800	0.083

TERCER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	70.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
MiI			Número			•				-	
Nivel	τ	L		Α	Tipo de Elemento	C _{ma}	α1	α_2	α_3	F	E _p
3	cm	cm	de veces	cm		A. Confinada					
Muro 1	13	500	2	13000	Albañilería Confinada	32331.0	1.000	0.700	0.500	0.800	0.308
Muro 2	13	400	2	10400	Albañilería Confinada	25864.8	1.000	0.700	0.500	0.800	0.246
Muro 3	13	200	1	2600	Albañilería Confinada	6466.2	1.000	0.700	0.500	0.800	0.062

	CAPA	CIDAD	DEMANDA	Ctatus
	E ₀	ls	Iso	Status
3er Nivel	0.616	0.493	0.48	No Vulnerable
2do Nivel	0.725	0.580	0.48	No Vulnerable
1er Nivel	0.573	0.459	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 13

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO						Bin	14	1
n	3			Número de	pisos			I MI	IM		A Par
Peso/m²	800	kgf/m²		Peso por pi	so por m²		1000	3110	9	H2 4	N. Par
Área del Piso	56.00	m²		Área del Pis	50			-	TO THE REAL PROPERTY.	TEN	-10
τ_0	8.1	kgf/cm²		Esfuerzo de	e corte de la Albañilería				30		
σ_0	6	kgf/cm²		Esfuerzo Ax	kial en albañilería por piso				in		Mada
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto		4			logo Si	
Modo de Falla		Albañ	ilería Con	finada			To A	J.	.5		
Nivel	t	L	Número	A		C _{ma}	α1	α2	α ₃	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					·
Muro 1	13	550	2	14300	Albañilería Confinada	44144.1	1.000	0.700	0.500	0.800	0.263
Muro 2	13	700	2	18200	Albañilería Confinada	56183.4	1.000	0.700	0.500	0.800	0.334

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	58.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
				_		_					
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α_1	α_2	α3	F	E _p
2	cm	cm	de veces	cm	ripo do Liomonto	A. Confinada					
Muro 1	13	750	2	19500	Albañilería Confinada	54346.5	1.000	0.700	0.500	0.800	0.375
Muro 2	13	500	2	13000	Albañilería Confinada	36231.0	1.000	0.700	0.500	0.800	0.250
Muro 3	13	200	4	10400	Albañilería Confinada	28984.8	1.000	0.700	0.500	0.800	0.200

MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	60.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
		_				_				_	
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α_1	α_2	α_3	F	Ep
3	cm	cm	de veces	cm	ripo do Liomonto	A. Confinada					
Muro 1	13	750	2	19500	Albañilería Confinada	48496.5	1.000	0.700	0.500	0.800	0.539
Muro 2	13	500	2	13000	Albañilería Confinada	32331.0	1.000	0.700	0.500	0.800	0.359

	CAPA	CIDAD	DEMANDA	Ctatus
	E_0	ls	Iso	Status
3er Nivel	0.898	0.718	0.48	No Vulnerable
2do Nivel	0.825	0.660	0.48	No Vulnerable
1er Nivel	0.597	0.478	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 14

PRIMER NIVEL

	- 1- 1 -									ATTION 1	AND DESCRIPTION OF THE PERSON
MÉTODO DE	HIROSAW	A MODIFIC	CADO						100		
n	3			Número de	pisos					100	1
Peso/m²	800	kgf/m²		Peso por pi	so por m²					1	
Área del Piso	100.00	m²		Área del Pis	60					di	
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería				24		
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto				To the last	-	THE T
Modo de Falla		Alhañ	ilería Con	finada							
Wodo de i ana	ı	Albaii	illeria con	IIIaua						all the last	
									-		
Nivel	t	L	Número	Α		C _{ma}	α1	α_2	α3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	550	4	28600	Albañilería Confinada	88288.2	1.000	0.700	0.500	0.800	0.294
Muro 2	13	300	4	15600	Albañilería Confinada	48157.2	1.000	0.700	0.500	0.800	0.161
Muro 3	13	250	2	6500	Albañilería Confinada	20065.5	1.000	0.700	0.500	0.800	0.067

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	100.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A		C _{ma}	α,	α,	α3	F	E,
2	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada		2	3		
Muro 1	13	500	4	26000	Albañilería Confinada	72462.0	1.000	0.700	0.500	0.800	0.290
Muro 2	13	200	4	10400	Albañilería Confinada	28984.8	1.000	0.700	0.500	0.800	0.116
Muro 3	13	250	2	6500	Albañilería Confinada	18115.5	1.000	0.700	0.500	0.800	0.072

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	100.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Conf	inada							
Nivel	t	L	Número	A	The de Florente	C _{ma}	α ₁	α2	α_3	F	E _p
3	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	4	26000	Albañilería Confinada	64662.0	1.000	0.700	0.500	0.800	0.431
Muro 2	13	200	4	10400	Albañilería Confinada	25864.8	1.000	0.700	0.500	0.800	0.172
Muro 3	13	250	2	6500	Albañilería Confinada	16165.5	1.000	0.700	0.500	0.800	0.108

RESULTADO

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.711	0.569	0.48	No Vulnerable
2do Nivel	0.478	0.383	0.48	Vulnerable
1er Nivel	0.522	0.417	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 15

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						100
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	120.00	m²		Área del Pis	60			1-71			
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso				1911		
fc	210	kgf/cm²		Resistencia	a la compresión del concreto						
Modo de Falla		Albañ	ilería Con	finada				772		THE STATE OF THE S	MIN
Nivel	t	L	Número	A		C _{ma}	α ₁	α_2	α ₃	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	6	39000	Albañilería Confinada	120393.0	1.000	0.700	0.500	0.800	0.334
Muro 2	13	350	3	13650	Albañilería Confinada	42137.6	1.000	0.700	0.500	0.800	0.117
Muro 3	13	250	2	6500	Albañilería Confinada	20065.5	1.000	0.700	0.500	0.800	0.056

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	120.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A		C _{ma}	α1	α2	a ₃	F	E _p
2	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					Ρ
Muro 1	13	500	6	39000	Albañilería Confinada	108693.0	1.000	0.700	0.500	0.800	0.362
Muro 2	13	300	4	15600	Albañilería Confinada	43477.2	1.000	0.700	0.500	0.800	0.145
Muro 3	13	250	2	6500	Albañilería Confinada	18115.5	1.000	0.700	0.500	0.800	0.060

TERCER NIVEL

MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	120.00	m²		Área del Pis	50						
τ_0	8.1	kgf/cm²		Esfuerzo de	e corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	xial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	4	1	Número	A		•	~			F	
					Tipo de Elemento	C _{ma}	α1	α2	α3		E _p
3	cm	cm	de veces	cm		A. Confinada					
Muro 1	13	500	6	39000	Albañilería Confinada	96993.0	1.000	0.700	0.500	0.800	0.539
Muro 2	13	300	4	15600	Albañilería Confinada	38797.2	1.000	0.700	0.500	0.800	0.216
Muro 3	13	250	2	6500	Albañilería Confinada	16165.5	1.000	0.700	0.500	0.800	0.090

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.844	0.760	0.48	No Vulnerable
2do Nivel	0.568	0.511	0.48	No Vulnerable
1er Nivel	0.507	0.456	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 16

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	ADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pis	so por m²						TV
Área del Piso	100.00	m²		Área del Pis	60					/1	建
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería					/	-
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso			1.1	19/4		
fc	210	kgf/cm²		Resistencia	a la compresión del concreto						
Modo de Falla		Albañ	ilería Cont	finada				1			
Nivel	t	L	Número	Α		C _{ma}	α_1	α_2	α_3	F	Ep
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	5	32500	Albañilería Confinada	100327.5	1.000	0.700	0.500	0.800	0.334
Muro 2	13	1000	1	13000	Albañilería Confinada	40131.0	1.000	0.700	0.500	0.800	0.134
Muro 3	13	250	1	3250	Albañilería Confinada	10032.8	1.000	0.700	0.500	0.800	0.033

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	100.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	•	1	Número	A		C _{ma}	α1	α2	α ₃	F	E _p
2	cm	cm	de veces		Tipo de Elemento	A. Confinada	W ₁	W ₂	u 3		-р
-	cm										
Muro 1	13	500	5	32500	Albañilería Confinada	90577.5	1.000	0.700	0.500	0.800	0.362
Muro 2	13	250	2	6500	Albañilería Confinada	18115.5	1.000	0.700	0.500	0.800	0.072
Muro 3	13	200	1	2600	Albañilería Confinada	7246.2	1.000	0.700	0.500	0.800	0.029

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	100.00	m²		Área del Pis	60						
το	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	•		Número	A		C _{ma}	α.	α.	α.	F	E _p
-					Tipo de Elemento		α1	α2	α3	'	∟ p
3	cm	cm	de veces	cm		A. Confinada					
Muro 1	13	500	5	32500	Albañilería Confinada	80827.5	1.000	0.700	0.500	0.800	0.539
Muro 2	13	600	1	7800	Albañilería Confinada	19398.6	1.000	0.700	0.500	0.800	0.129
Muro 3	13	200	1	2600	Albañilería Confinada	6466.2	1.000	0.700	0.500	0.800	0.043

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.711	0.640	0.48	No Vulnerable
2do Nivel	0.464	0.417	0.48	Vulnerable
1er Nivel	0.502	0.451	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 17

PRIMER NIVEL

MÉTODO DE	HIROSAV	A MODIFIC	CADO						1		P
n	3			Número de	pisos				1		
Peso/m²	800	kgf/m²		Peso por pi	Peso por piso por m²						
Área del Piso	100.00	m²		Área del Pis	60			30 AM			
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería			711			
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						H
fc	210	kgf/cm²		Resistencia	a la compresión del concreto				To annual	and the	
Modo de Falla	l	Albañ	ilería Con	finada						THE REAL PROPERTY.	
Nivel	•	L		A		C _{ma}	~	α_2	a ₃	F	E _p
MIVEI	٠.		Número	Α	Tipo de Elemento	Uma	α1	u ₂	u3	Г	⊏p
1	cm	cm	de veces	cm	Tipo de Liemento	A. Confinada					
Muro 1	13	500	6	39000	Albañilería Confinada	120393.0	1.000	0.700	0.500	0.800	0.401
Muro 2	13	250	2	6500	Albañilería Confinada	20065.5	1.000	0.700	0.500	0.800	0.067

MÉTODO DE	HIROSAW	/A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	100.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
			NI	_		_				_	
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α1	α2	α3	F	E _p
2	cm	cm	de veces	cm		A. Confinada					
Muro 1	13	500	6	39000	Albañilería Confinada	108693.0	1.000	0.700	0.500	0.800	0.435
Muro 2	13	150	2	3900	Albañilería Confinada	10869.3	1.000	0.700	0.500	0.800	0.043
Muro 3	13	200	1	2600	Albañilería Confinada	7246.2	1.000	0.700	0.500	0.800	0.029

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	100.00	m²		Área del Pis	50						
τ_0	8.1	kgf/cm²		Esfuerzo de	e corte de la Abañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	rial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla	l	Albañ	ilería Conf	inada							
Nivel	t	L	Número	A	I	C _{ma}	α1	α2	α3	F	E _p
3	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada		-			
Muro 1	13	500	6	39000	Albañilería Confinada	96993.0	1.000	0.700	0.500	0.800	0.647

RESULTADO

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.647	0.582	0.48	No Vulnerable
2do Nivel	0.507	0.457	0.48	Vulnerable
1er Nivel	0.468	0.421	0.48	Vulnerable
	Esta	do de edific	ación	Vulnerable

EDFICACIÓN 18

PRIMER NIVEL

MÉTODO DE	HIROSAV	/A MODIFIC	CADO								10
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²			.		100	
Área del Piso	96.00	m²		Área del Pis	0						
το	8.1	kgf/cm²		Esfuerzo de	corte de la Abañilería				fie T		
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	210	kgf/cm²		Resistencia	a la compresión del concreto			10000000			
Modo de Falla		Albañ	ilería Con	finada				315		5 ₁	
Nivel	t	L	Número	A		C _{ma}	α1	α_2	α_3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	400	4	20800	Albañilería Confinada	64209.6	1.000	0.700	0.500	0.800	0.223
Muro 2	13	500	2	13000	Albañilería Confinada	40131.0	1.000	0.700	0.500	0.800	0.139
Muro 3	13	350	4	18200	Albañilería Confinada	56183.4	1.000	0.700	0.500	0.800	0.195

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	96.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A		C _{ma}	α1	α,	α3	F	E _p
2	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada			,		-р
Muro 1	13	300	3		Albañilería Confinada	32607.9	1.000	0.700	0.500	0.800	0.136
Muro 2	13	400	4		Albañilería Confinada	57969.6	1.000	0.700	0.500	0.800	0.242
Muro 3	13	500	4	26000	Albañilería Confinada	72462.0	1.000	0.700	0.500	0.800	0.302

TERCER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	96.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	•	-	Número	A		C _{ma}	α1	α2	a ₃	F	E,
3			de veces		Tipo de Elemento		u ₁	u ₂	u 3	•	∟ p
-	cm	cm		cm		A. Confinada					
Muro 1	13	300	3	11700	Albañilería Confinada	29097.9	1.000	0.700	0.500	0.800	0.202
Muro 2	13	400	4	20800	Albañilería Confinada	51729.6	1.000	0.700	0.500	0.800	0.359
Muro 3	13	500	4	26000	Albañilería Confinada	64662.0	1.000	0.700	0.500	0.800	0.449

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	1.010	0.909	0.48	No Vulnerable
2do Nivel	0.679	0.611	0.48	No Vulnerable
1er Nivel	0.557	0.502	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 19

PRIMER NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²			1			1
Área del Piso	40.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	6	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	210	kgf/cm²		Resistencia	a a la compresión del concreto						
Modo de Falla		Albañ	ilería Cont	inada							
Nivel	t	L	Número	Α		C _{ma}	α_1	α_2	α_3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					
Muro 1	13	500	1	6500	Albañilería Confinada	20065.5	1.000	0.700	0.500	0.800	0.167
Muro 2	13	400	4	20800	Albañilería Confinada	64209.6	1.000	0.700	0.500	0.800	0.535
Muro 3	13	150	2	3900	Albañilería Confinada	12039.3	1.000	0.700	0.500	0.800	0.100

SEGUNDO NIVEL

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	40.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concre	eto					
Modo de Falla		Albañ	ilería Con	finada							
				_		_				_	
Nivel	t	L	Número	Α	Tipo de Elemento	C _{ma}	α1	α_2	α3	F	E _p
2	cm	cm	de veces	cm	ripo do Licinolito	A. Confinada					
Muro 1	13	500	1	6500	Albañilería Confinada	18115.5	1.000	0.700	0.500	0.800	0.181
Muro 2	13	400	4	20800	Albañilería Confinada	57969.6	1.000	0.700	0.500	0.800	0.580
Muro 3	13	150	1	1950	Albañilería Confinada	5434.7	1.000	0.700	0.500	0.800	0.054

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	40.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Con	finada							
Nivel	+	1	Número	A		C _{ma}	α1	α2	α ₃	F	E _p
3			de veces		Tipo de Elemento		W 1	u.z	u ₃	•	-р
-	cm	cm		cm		A. Confinada					
Muro 1	13	500	1	6500	Albañilería Confinada	16165.5	1.000	0.700	0.500	0.800	0.269
Muro 2	13	400	4	20800	Albañilería Confinada	51729.6	1.000	0.700	0.500	0.800	0.862

	CAPA	CIDAD	DEMANDA	
	E_0	ls	Iso	Status
3er Nivel	1.132	1.018	0.48	No Vulnerable
2do Nivel	0.815	0.734	0.48	No Vulnerable
1er Nivel	0.803	0.722	0.48	No Vulnerable
	Esta	do de edific	ación	No Vulnerable

EDFICACIÓN 20

PRIMER NIVEL

MÉTODO DE	HIROSAV	A MODIFIC	ADO						į.		J.A.
n	3			Número de	pisos				71	A COLUMN	
Peso/m²	800	kgf/m²		Peso por pis	so por m²				1/1		
Área del Piso	280.00	m²		Área del Pis	0						TEN
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería				1		-
σ_0	6	kgf/cm²		Esfuerzo Ax	al en albañilería por piso						
fc	210	kgf/cm²		Resistencia	a la compresión del concreto				-	·DEE E	
Modo de Falla		Albañ	ilería Con	finada							
Nivel	t	L	Número	A		C _{ma}	α ₁	α2	α_3	F	E _p
1	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada					·
Muro 1	13	500	12	78000	Albañilería Confinada	240786.0	1.000	0.700	0.500	0.800	0.287
Muro 2	13	400	8	41600	Albañilería Confinada	128419.2	1.000	0.700	0.500	0.800	0.153
Muro 3	13	300	4	15600	Albañilería Confinada	48157.2	1.000	0.700	0.500	0.800	0.057

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	280.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	4	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a la compresión del concr	eto					
Modo de Falla		Albañ	ilería Conf	finada							
Nivel		L	Número	A		•	~			F	
	ι	L		A	Tipo de Elemento	C _{ma}	α1	α2	α3	Г	Ep
2	cm	cm	de veces	cm	-	A. Confinada					
Muro 1	13	500	12	78000	Albañilería Confinada	217386.0	1.000	0.700	0.500	0.800	0.311
Muro 2	13	400	10	52000	Albañilería Confinada	144924.0	1.000	0.700	0.500	0.800	0.207
Muro 3	13	250	4	13000	Albañilería Confinada	36231.0	1.000	0.700	0.500	0.800	0.052

MÉTODO DE	HIROSAW	A MODIFIC	CADO								
n	3			Número de	pisos						
Peso/m²	800	kgf/m²		Peso por pi	so por m²						
Área del Piso	280.00	m²		Área del Pis	60						
τ_0	8.1	kgf/cm²		Esfuerzo de	corte de la Albañilería						
σ_0	2	kgf/cm²		Esfuerzo Ax	ial en albañilería por piso						
fc	175	kgf/cm²		Resistencia	a a la compresión del concr	eto					
Modo de Falla	l	Albañ	ilería Con	finada							
Nivel	+	1	Número	A		C _{ma}	α1	α2	a ₃	F	E _p
3	cm	cm	de veces	cm	Tipo de Elemento	A. Confinada	W 1	- W ₂	u 3	•	-р
Muro 1	13	500		-	Albañilería Confinada	193986.0	1.000	0.700	0.500	0.800	0.462
Muro 2	13	400	10	52000	Albañilería Confinada	129324.0	1.000	0.700	0.500	0.800	0.308
Muro 3	13	250	4	13000	Albañilería Confinada	32331.0	1.000	0.700	0.500	0.800	0.077

	CAPA	CIDAD	DEMANDA	
	E ₀	ls	Iso	Status
3er Nivel	0.847	0.762	0.48	No Vulnerable
2do Nivel	0.569	0.512	0.48	No Vulnerable
1er Nivel	0.497	0.447	0.48	Vulnerable
	Esta	do de edific	Vulnerable	